The endoplasmic reticulum (ER) of eukaryotic cells is involved in the synthesis and processing of proteins and lipids in the secretory pathway. These processing events that proteins undergo in the ER may present major limiting steps for recombinant protein production. Increased protein synthesis, accumulation of improperly processed or mis-folded protein can induce ER stress. To cope with ER stress, the ER has quality control mechanisms, such as the unfolded protein response (UPR) and ER-associated degradation to restore homeostasis. ER stress and UPR activation trigger multiple physiological cellular changes. Here we review cellular mechanisms that cope with ER stress and illustrate how this knowledge can be applied to increase the efficiency of recombinant protein expression.
Due in part to the needs of the biopharmaceutical industry, there has been an increased drive to generate high quality recombinant proteins in large amounts. However, achieving high yields can be a challenge as the novelty and increased complexity of new targets often makes them ‘difficult‐to‐express’. This study aimed to define the molecular features that restrict the production of a model ‘difficult‐to‐express’ recombinant protein, Tissue Inhibitor Metalloproteinase‐3 (TIMP‐3). Building from experimental data, computational approaches were used to rationalize the redesign of this recombinant target to generate a chimera with enhanced secretion. The results highlight the importance of early identification of unfavourable sequence attributes, enabling the generation of engineered protein forms that bypass ‘secretory’ bottlenecks and result in efficient recombinant protein production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.