The endoplasmic reticulum (ER) of eukaryotic cells is involved in the synthesis and processing of proteins and lipids in the secretory pathway. These processing events that proteins undergo in the ER may present major limiting steps for recombinant protein production. Increased protein synthesis, accumulation of improperly processed or mis-folded protein can induce ER stress. To cope with ER stress, the ER has quality control mechanisms, such as the unfolded protein response (UPR) and ER-associated degradation to restore homeostasis. ER stress and UPR activation trigger multiple physiological cellular changes. Here we review cellular mechanisms that cope with ER stress and illustrate how this knowledge can be applied to increase the efficiency of recombinant protein expression.
The unfolded protein response (UPR) signaling pathway is viewed as critical for setting the effectiveness of recombinant protein expression in CHO cells. In this study, Nanostring nCounter technology is used to study expression of a group of genes associated with cellular processes linked to UPR activation under ER stress and the changing environment of a batch culture. Time course induction of ER stress, using tunicamycin (TM), shows a group of genes such as Chop, Trb3, Sqstm1, Grp78, and Herpud1 respond rapidly to TM inhibition of N-glycosylation, while others such as Atf5, Odz4, and Birc5 exhibits a delayed response. In batch culture, expression of "classical" UPR markers only increases when cells enter decline phase. In addition to providing a detailed analysis of the expression of process-relevant UPR markers during batch culture and in response to imposed chemical stress, we also highlighted six genes (Herpud1, Odz4, Sqstm1, Trb3, Syvn1, and Birc5) associated with the perception of ER stress responses in recombinant CHO cells. Herpud1 (involved in ER-associated degradation) exhibits a rapid (primary) response to stress and its relationship (and that of the other five genes) to the overall cellular UPR may identify novel targets to modulate recombinant protein production in CHO cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.