Progressive familial intrahepatic cholestasis type 2 (PFIC2) is caused by a mutation in the bile salt export pump (BSEP/ABCB11) gene. We previously reported that E297G and D482G BSEP, which are frequently found mutations in European patients, result in impaired membrane trafficking, whereas both mutants retain their transport function. The dysfunctional localization is probably attributable to the retention of BSEP in endoplasmic reticulum (ER) followed by proteasomal degradation. Because sodium 4-phenylbutyrate (4PBA) has been shown to restore the reduced cell surface expression of mutated plasma membrane proteins, in the current study, we investigated the effect of 4PBA treatment on E297G and D482G BSEP.
Pravastatin is a well known 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor. Cumulative studies have shown that pravastatin is taken up into hepatocytes by the organic anion transporting polypeptide family transporters and excreted into the bile as an intact form by multidrug resistance-associated protein 2 (MRP2). It is generally accepted that the bile salt export pump (BSEP/ABCB11) mainly transports bile acids and plays an indispensable role in their biliary excretion. Interestingly, we found that BSEP could accept pravastatin as a substrate. Significant ATP-dependent uptake of pravastatin by human BSEP (hBSEP)-and rat BSEP (rBsep)-expressing membrane vesicles was observed, and the ratio of the uptake activity of pravastatin to that of taurocholic acid (TCA) by hBSEP was 3.3-fold higher than that by rBsep. The K m value of pravastatin for hBSEP was 124 M. A mutual inhibition study between TCA and pravastatin revealed that they competitively interact with hBSEP. Several statins inhibited the hBSEP-and rBsep-mediated uptake of TCA; however, the specific uptake of other statins (cerivastatin, fluvastatin, and pitavastatin) by hBSEP and rBSEP was not detected. The inhibitory effects of hydrophilic statins (pravastatin and rosuvastatin) on the uptake of TCA by BSEP were relatively lower than those of lipophilic statins. These data suggest that BSEP may be partly involved in the biliary excretion of pravastatin in both rats and humans.
ABSTRACT:Vectorial transport of bile acids across hepatocytes is a major driving force for bile flow, and bile acid retention in the liver causes hepatotoxicity. The basolateral and apical transporters for bile acids are thought to be targets of drugs that induce cholestasis. Previously, we constructed polarized LLC-PK1 cells that express both a major bile acid uptake transporter human Na
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.