In order to respond to the constant demand for more productivity in the manufacture of IC devices, higher throughput and higher resolution are fundamental requirements for each new generation of exposure tools. However, meeting both requirements lead to unwanted aberration we refer to as "thermal aberration". In our experience, the problem of the thermal aberrations does not correlated only to the duration of heavy use. It depends very strongly on both the optical settings and the mask patterns, also even on the specific interaction between the two. So, even if using the same illumination settings, there is a possibility to observe different distribution of thermal aberrations. In this paper, we define and investigate various patterns to be used as targets for thermal aberrations compensation. These patterns are identified as the "weak patterns" of the thermal aberration. We assess several cases of thermal aberrations, and show how the optimized compensation for each is determined and then applied on the actual exposure tools.
Nikon has developed an illuminator with special options for RET (Resolution Enhancement Technique). For one of the solutions of RET, Nikon has pursued the development of a loss-less polarized illumination system. When the polarization direction is the same as the direction of the printed pattern, this technique improves image contrast and extends the process margin. We have simulated the impact of the RET with polarized illumination, in the case of dipole illumination and phase-shift masks, and we have estimated the dominant parameters for high performance polarized illumination. In addition, we have constructed a polarized-light illuminator and installed it in an ArF full-field scanner. We have measured and optimized the degree and distribution of polarization at the wafer plane with a special tool, and we have investigated image performance with polarized dipole illumination. Results show that the new polarized-light illuminator has extended the process margin, especially with respect to dose latitude. The results of the image simulations and experiments will be reported.
In order to realize further improvement of productivity of semiconductor manufacturing, higher throughput and better imaging performance are required for the exposure tool. Therefore, aberration control of the projection lens is becoming more and more important not only for cool status performance but also heating status. In this paper, we show the improvements of cool status lens aberration, including scalar wavefront performance and polarization aberration performance. We also discuss various techniques for controlling thermal aberrations including reduction of heat in the lens, simulation, compensating knob, and adjusting method with actual imaging performance data during heating and cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.