Most flower visitors innately prefer a particular color and scent, and use them as cues for flower recognition and selection. However, in most cases, since color and scent serve as a combined signal, not only does the preference for an individual cue, but also the preference hierarchy among different cues, influence their flower visitation. In the present study, we attempted to reveal (1) the chromatic and (2) the olfactory cues that stimulate flower visiting, and (3) the preference hierarchy between these cues, using the naive adult butterfly Vanessa indica. When we offered 12 different-colored (six chromatic and six achromatic) paper flower models, V. indica showed a color preference for yellow and blue. When we examined the proboscis extension reflex (PER) of V. indica towards 16 individual compounds identified in the floral scents from two nectar plants belonging to the family Compositae, Taraxacum officinale and Cirsium japonicum, six compounds were found to have relatively high PER-eliciting activities, including benzaldehyde, acetophenone, and (E+Z)-nerolidol. When we combined color and scent cues in two-choice bioassays, where butterflies were offered flower models that were purple (a relatively unattractive color), the models scented with these active compounds were significantly more attractive than the odorless controls. In addition, synthetic blends mimicking the floral scents of T. officinale and C. japonicum (at doses equivalent to that of ten flowers) enhanced the number of visits to the scented models. However, the effect of odorizing was not conspicuous in parallel bioassays when yellow flower models were used, and the butterflies also significantly preferred odorless yellow models to scented purple models. These results demonstrate that V. indica depends primarily on color and secondarily on scent during flower visitation.
We compared the chemical compositions of the osmeterial secretions of fourth and fifth (last) instars of eight swallowtail species of the tribe Papilionini. Four species (Papilio demoleus, P. polytes, P. paris, and P. macilentus) are Asian Rutaceae-feeding swallowtails. The other four (Chilasa epicydes, C. agestor, P. troilus, and P. glaucus) represent more distant clades within the Papilionini and species with larval hosts in other plant families. We conducted a quantitative analysis for six species, but only qualitative analysis for P. glaucus and C. agestor. In all eight species, regardless of larval host plant, secretions of the fourth instar principally consisted of mono- and sesquiterpene hydrocarbons, whereas those of the fifth instar comprised aliphatic acids and their esters. Consistent with earlier findings, our results suggest that this "heterogeneous" pattern of osmeterial chemistry, not seen in other tribes, may characterize the Papilionini as a whole. Unlike those of most Papilio species, the fourth and fifth instars of Chilasa species resemble each other in body coloration. Thus, the heterogeneous osmeterial pattern is not necessarily associated with color change in papilionid larvae. The major terpenoids identified in fourth instar larval secretions from the six species were alpha-pinene, sabinene, beta-myrcene, limonene, beta-phellandrene, (Z)-beta-ocimene, (E)-beta-ocimene, p-mentha-1,4(8)-diene, beta-elemene, beta-caryophyllene, (E)-beta-farnesene, (3Z,6E)-alpha-farnesene, (Z)-alpha-bisabolene, germacrene-A, (E)-alpha-bisabolene, and germacrene-B. The profiles for individual species differed both qualitatively and quantitatively from one another, and certain species also secreted methyl 3-hydroxy-n-butyrate and oxygenated sesquiterpenes in relatively large proportions. Secretions from fifth instars were composed of varying proportions of isobutyric, 2-methylbutyric, and acetic acids, and methyl and ethyl (minor) esters of both isobutyric and 2-methylbutyric acids. The heterogeneity of osmeterial chemistry in the tribe Papilionini may represent fine-tuning of chemical defense in response to shifting predation pressures as the larvae age and grow.
As most work on flower foraging focuses on bees, studying Lepidoptera can offer fresh perspectives on how sensory capabilities shape the interaction between flowers and insects. Through a combination of innate preferences and learning, many Lepidoptera persistently visit particular flower species. Butterflies tend to rely on their highly developed sense of colour to locate rewarding flowers, while moths have evolved sophisticated olfactory systems towards the same end. However, these modalities can interact in complex ways; for instance, butterflies' colour preference can shift depending on olfactory context. The mechanisms by which such cross-modal interaction occurs are poorly understood, but the mushroom bodies appear to play a central role. Because of the diversity seen within Lepidoptera in terms of their sensory capabilities and the nature of their relationships with flowers, they represent a fruitful avenue for comparative studies to shed light on the co-evolution of flowers and flower-visiting insects.
Flower-visiting insects exhibit innate preferences for particular colours. A previous study demonstrated that naive Papilio xuthus females prefer yellow and red, whereas males are more attracted to blue. Here, we demonstrate that the innate colour preference can be modified by olfactory stimuli in a sexually dimorphic manner. Naive P. xuthus were presented with four coloured discs: blue, green, yellow and red. The innate colour preference (i.e. the colour first landed on) of the majority of individuals was blue. When scent from essential oils of either orange flower or lily was introduced to the room, females' tendency to select the red disc increased. Scents of lavender and flowering potted Hibiscus rosa-sinensis, however, were less effective. Interestingly, the odour of the non-flowering larval host plant, Citrus unshiu, shifted the preference to green in females. In males, however, all plant scents were less effective than in females, such that blue was always the most favoured colour. These observations indicate that interactions between visual and olfactory cues play a more prominent role in females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.