SUMMARY
Manduca sexta caterpillars are unusual because they exhibit strong peripheral gustatory responses to sugars, but nevertheless fail to show immediate appetitive responses to them. We hypothesized that the primary function of the peripheral gustatory response to sugars is to mask the taste of noxious compounds, which abound in host plants of M. sexta. We compared 10 s biting responses to water with those to mixtures of a noxious compound [caffeine (Caf) or aristolochic acid (AA)] and various combinations of sugars [i.e. sucrose (Suc), glucose (Glu), inositol (Ino), Suc+Glu, Suc+Ino or Glu+Ino]. The biting assays indicated that the aversive taste of AA was completely masked by Suc+Ino, and partially masked by Suc+Glu, Glu+Ino and Suc, whereas that of Caf was completely masked by Suc+Ino and Suc+Glu, and partially masked by Glu+Ino, Suc and Ino. To examine the contribution of the peripheral taste system to the masking phenomenon, we recorded responses of the maxillary gustatory sensilla to each stimulus mixture. The sugars differed greatly in their capacity to suppress peripheral gustatory responses to AA and Caf: Suc+Ino and Suc+Glu produced the greatest suppression, and Glu and Ino the least. Further, the extent to which each sugar stimulus suppressed the peripheral gustatory responses to AA reliably predicted the extent to which it masked the taste of AA in biting assays; no such predictive relationship was observed for the sugar/Caf mixtures. We conclude that some, but not all, sugars act on both peripheral and central elements of the gustatory system to mask the taste of noxious compounds.