Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates the exchange of cholesteryl ester in high-density lipoprotein (HDL) for triglyceride in very low density lipoprotein (VLDL). This process decreases the level of anti-atherogenic HDL cholesterol and increases pro-atherogenic VLDL and low density lipoprotein (LDL) cholesterol, so CETP is potentially atherogenic. On the other hand, CETP could also be anti-atherogenic, because it participates in reverse cholesterol transport (transfer of cholesterol from peripheral cells through the plasma to the liver). Because the role of CETP in atherosclerosis remains unclear, we have attempted to develop a potent and specific CETP inhibitor. Here we describe CETP inhibitors that form a disulphide bond with CETP, and present one such inhibitor (JTT-705) that increases HDL cholesterol, decreases non-HDL cholesterol and inhibits the progression of atherosclerosis in rabbits. Our findings indicate that CETP may be atherogenic in vivo and that JTT-705 may be a potential anti-atherogenic drug.
The viral enzyme integrase is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents a remaining target for antiretroviral drugs. Here, we describe the modification of a quinolone antibiotic to produce the novel integrase inhibitor JTK-303 (GS 9137) that blocks strand transfer by the viral enzyme. It shares the core structure of quinolone antibiotics, exhibits an IC50 of 7.2 nM in the strand transfer assay, and shows an EC50 of 0.9 nM in an acute HIV-1 infection assay.
Small-molecule nociceptin antagonists were synthesized to examine their therapeutic potential. After a 4-aminoquinoline derivative was found to bind with the human ORL(1) receptor, a series of 4-aminoquinolines and related compounds were synthesized and their binding was evaluated. Elucidation of structure-activity relationships eventually led to the optimum compounds. One of these compounds, N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl)benzamide hydrochloride (11) not only antagonized nociceptin-induced allodynia in mice but also showed analgesic effect in a hot plate test using mice and in a formalin test using rats. Its analgesic effect was not antagonized by the opioid antagonist naloxone. These results indicate that this nociceptin antagonist has the potential to become a novel type of analgesic that differs from mu-opioid agonists.
Systematic and reproducible control over average interparticle spacing of Pt, Ni, and Cu nanoparticles embedded in polyimide thin layers was achieved. The metal-catalyzed decomposition of polyimide matrixes surrounding metal nanoparticles causes a decrease in the composite layer thickness, while maintaining the size of nanoparticles. This ability provides an effective methodology for the preparation of metal/polymer nanocomposites with tailored microstructures and holds great promise toward the fundamental understanding of the physical interactions among metal nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.