We present a novel synthesis of ligand-free
colloidal silicon nanocrystals
(Si-NCs) that exhibits efficient photoluminescence (PL) in a wide
energy range (0.85–1.8 eV) overcoming the bulk Si band gap
limitation (1.12 eV). The key technology to achieve the wide-range
controllable PL is the formation of donor and acceptor states in the
band gap of Si-NCs by simultaneous doping of n- and p-type impurities.
The colloidal Si-NCs are very stable in an ordinary laboratory atmosphere
for more than a year. Furthermore, the PL spectra are very stable
and are not at all affected even when the colloids are drop-cast on
a substrate and dried in air. The engineering of the all-inorganic
colloidal Si-NC and its optical data reported here are important steps
for Si-based optoelectronic and biological applications.
Molecularly imprinted polymer gel with embedded gold nanoparticle was prepared on a gold substrate of a chip for a surface plasmon resonance (SPR) sensor for fabricating an SPR sensor sensitive to a low molecular weight analyte. The sensing is based on swelling of the imprinted polymer gel that is triggered by an analyte binding event within the polymer gel. The swelling causes greater distance between the gold nanoparticles and substrate, shifting a dip of an SPR curve to a higher SPR angle. The polymer synthesis was conducted by radical polymerization of a mixture of acrylic acid, N-isopropylacrylamide, N,N'-methylenebisacrylamide, and gold nanoparticles in the presence of dopamine as model template species on a sensor chip coated with allyl mercaptan. The modified sensor chip showed an increasing SPR angle in response to dopamine concentration, which agrees with the expected sensing mechanism. Furthermore, the gold nanoparticles were shown to be effective for enhancing the signal intensity (the change of SPR angle) by comparison with a sensor chip immobilizing no gold nanoparticles. The analyte binding process and the consequent swelling appeared to be reversible, allowing one the repeated use of the presented sensor chip.
We demonstrate the formation of a new type of surfactant-free colloidal silicon nanocrystal (Si-NC). The characteristic structural feature of the Si-NCs is simultaneous doping of phosphorus (P) and boron (B) in and on the surface of Si-NCs. The codoped Si-NCs are stable in methanol for more than a year and exhibit luminescence in the near-infrared range. We perform comprehensive studies on the structure of codoped colloidal Si-NCs and discuss the mechanism of the high solution dispersibility.
We report a novel method to prepare silicon quantum dots (Si-QDs) having excellent stability in water without organic-ligands by simultaneously doping phosphorus and boron. The codoped Si-QDs in water exhibit bright size-tunable luminescence in a biological window. The luminescence of codoped Si-QDs is very stable under continuous photoexcitation in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.