Bangle (Zingiber purpureum) is a tropical ginger that is used as a spice in Southeast Asia. Phenylbutenoid dimers isolated from Bangle have exhibited neurotrophic effects in primary cultured rat cortical neurons and PC12 cells. Furthermore, chronic treatment with phenylbutenoid dimers enhances hippocampal neurogenesis in olfactory bulbectomized mice. In this study, we investigated the effects of Bangle extract on behavior and hippocampal neurogenesis in vivo. SAMP8 mice, which are an established model for accelerated aging, with age-related learning and memory impairments, were given a Bangle-containing diet for 1 month, and subsequent behavioral tests and immunohistochemistry for Ki67, a proliferating cell marker, were performed. We found that the Bangle-containing diet improved spatial learning and memory deficits in the Morris water maze and significantly increased the numbers of Ki67-positive cells in the dentate gyrus of the SAMP8 mice. In addition, the Bangle extract exhibited a neurotrophin-like activity as indicated by the induction of neurite sprouting in PC12 cells. Our results suggest that Bangle is beneficial for the prevention of age-related progression of cognitive impairment.
We previously prepared and pharmaceutically evaluated ginger orally disintegrating (OD) tablets, optimized the base formulation, and carried out a clinical trial in healthy adults in their 20 s and 50s to measure their effect on salivary substance P (SP) level and improved swallowing function. In this study, we conducted clinical trials using the ginger OD tablets in older people to clinically evaluate the improvements in swallowing function resulting from the functional components of the tablet. The ginger OD tablets were prepared by mixing the excipients with the same amount of mannitol and sucrose to a concentration of 1% ginger. Eighteen healthy older adult volunteers aged 63 to 90 were included in the swallowing function test. Saliva was collected before and 15 min after administration of the placebo and ginger OD tablets. Swallowing endoscopy was performed by an otolaryngologist before administration and 15 min after administration of the ginger OD tablets. A scoring method was used to evaluate the endoscopic swallowing. Fifteen minutes after taking the ginger OD tablets, the salivary SP amount was significantly higher than prior to ingestion or after taking the placebo (p<0.05). Among 10 subjects, one scored 1-3 using the four evaluation criteria. Overall, no aspiration occurred and a significant improvement in the swallowing function score was observed (p<0.05) after taking the ginger OD tablets. Our findings showed that the ginger OD tablets increased the salivary SP amount and improved swallowing function in older people with appreciably reduced swallowing function.Key words older people; dysphagia; ginger; orally disintegrating tablet; substance P; saliva The Japanese population is aging rapidly with older people (≥65 years) making up greater than 22% with further increases anticipated. Older people often suffer reduced vital functions from a combination of underlying disease and reduced physical and cognitive abilities. In particular, dysphagia is a serious problem and combined with reduced cough reflex, leads to increased risk of aspiration pneumonia. Currently pneumonia is the third leading cause of death in Japan, and the cause of death in greater than 90% of older patients. Aspiration is the speculated cause in many of the pneumonia related deaths. 1-3) Dysphagia also leads to malnutrition, dehydration, and loss of pleasure in eating, decreasing the patients' quality of life. The swallowing reflex is controlled by substance P (SP). Secretion of SP from nerve endings in the bronchial mucosa and oral cavity 4,5) is essential to proper swallowing function and reduced SP secretion is the cause of dysphagia. Swallowing dysfunction can be caused by decreased production of dopamine and SP. Salivary SP levels in older people are reported to be significantly lower than in healthy younger individuals. 6) When basal ganglia are disturbed, such as with cerebral infarction, dopaminergic nerve function decreases and then SP secretion decreases. These effects combined with reduced cough and swallowing reflex in...
Individual differences in gut microbiota can affect the pharmacokinetics of drugs. Yokukansan is a traditional Japanese kampo medicine used to treat peripheral symptoms of dementia and delirium. A study examining the pharmacokinetics of the components of yokukansan reported large individual differences in the pharmacokinetics of glycyrrhizic acid (GL). It is known that GL is metabolized by intestinal bacteria to glycyrrhetinic acid (GA), which is absorbed in the gastrointestinal tract. Thus, the gut microbiota may affect GL pharmacokinetics. We aimed to clarify the relationship between the gut microbiota composition and pharmacokinetics of GL in yokukansan. Mice were orally administered yokukansan, following the administration of various antibiotics, and the plasma concentration of GA and composition of gut microbiota were measured. The GA plasma concentration was low in mice treated with amoxicillin and vancomycin. The composition of gut microbiota revealed a different pattern from that of the control group. Mice with low plasma levels of GA had lower levels of the phylum Bacteroides and Firmicutes. Additionally, bacteria, such as those belonging to the genera Parabaceroides, Bacteroides, Ruminococcus and an unknown genus in families Lachnospiraceae and Ruminococcaceae, exerted positive correlations between the gene copies and plasma GA levels. These bacteria may contribute to the absorption of GA in the gastrointestinal tract, and multiple bacteria may be involved in GL pharmacokinetics. The pharmacokinetics of GL may be predicted by evaluating the composition of gut bacteria, rather than by evaluating the amount of a single bacterium.
Minerals are essential for life, as they are a vital part of protein constituents, enzyme cofactors, and other components in living organisms. Deep sea water is characterized by its cleanliness and stable low temperature, and its possible health-and medical benefits are being studied. However, no study has yet evaluated the physical properties of the numerous commercially available deep sea water products, which have varying water sources and production methods. We analyzed these products' mineral content and investigated their effect on living organism, focusing on immune functions, and investigated the relation between physiological immunoactivities and mineral intake. We qualitatively analyzed the mineral compositions of the deep sea water drinks and evaluated the drinks' physical properties using principal component analysis, a type of multivariate analysis, of their mineral content. We create an iron and copper-deficient rat model and administered deep sea water drinks for 8 weeks. We then measured their fecal immunoglobulin A (IgA) to evaluate immune function. Principal component analysis suggested that physical properties of deep sea water drinks could be determined by their sources. Administration of deep sea water drinks increased fecal IgA, thus tending to stimulate immune function, but the extent of this effect varied by drink. Of the minerals contained in deep sea water, iron showed positive correlations with the fecal IgA. The principal component analysis used in this study is suitable for evaluating deep sea water containing many minerals, and our results form a useful basis for comparative evaluations of deep sea water's bioactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.