Recent studies in genetically obese and diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats suggest defects of cholecystokinin (CCK)-A receptor gene expression and CCK-A receptor-mediated biological functions such as pancreatic juice, protein, and gastric acid secretion. The present studies were undertaken to further examine CCK-A receptor gene expression and CCK-A receptor-mediated biological functions in the pancreas, stomach, and brain of OLETF rats. Expression of the CCK-A receptor gene could not be detected in the stomach, pancreas and brain by the reverse-transcription polymerase chain reaction (RT-PCR) method and Southern blotting of the PCR products. Southern blot analysis of genomic DNA from OLETF and control Long-Evans Tokushima Otsuka (LETO) rats with CCK-A receptor fragment as a probe revealed different restriction bands. Expression of the CCK-B receptor gene was observed in the stomach, pancreas, and brain in both OLETF and LETO rats by the RT-PCR method, with expression of the CCK-B receptor gene markedly enhanced in OLETF rats compared with that in LETO rats. Consistent with the defect of CCK-A receptor gene expression, CCK-A receptor-mediated biological functions were not observed in these organs. Perfused exocrine and endocrine pancreas of OLETF rats were insensitive to CCK stimulation but not to carbamylcholine stimulation. Basal gastric acid and pepsinogen secretions in OLETF rats were higher than in LETO rats. OLETF rats showed a significantly higher average daily food intake, gained body weight faster, and were heavier than LETO rats. The present study confirmed that OLETF rats have CCK-A receptor gene anomalies and demonstrated deficient CCK-A receptor-mediated biological function in the pancreas, stomach, and brain.
Pancreatic exocrine function of a new inbred strain Otsuka Long-Evans Tokushima Fatty (OLETF) rat that develops spontaneous persistent hyperglycemia was evaluated in in vitro isolated pancreatic acini and compared with that in the control Long-Evans Tokushima Otsuka (LETO) rat. Serum glucose and insulin concentrations in the OLETF rats were significantly high (glucose: 270 +/- 12 vs. 208 +/- 10 mg/100 ml, P < 0.01; insulin: 12.4 +/- 1.7 vs. 4.9 +/- 0.6 ng/ml, P) < 0.01), whereas pancreatic wet weight was significantly low (803 +/- 20 vs. 1,138 +/- 17 mg, P < 0.01) compared with those in the LETO rat. Pancreatic acini isolated from the OLETF rat were totally insensitive to cholecystokinin (CCK)-8 stimulation at concentrations of up to 100 nM. However, neither the responsiveness nor the sensitivity to carbamylcholine, bombesin, and secretin of the acini from the OLETF rat was altered or even increased, probably due to the larger amylase content in the OLETF rat acini compared with those of the LETO rat acini (31.5 +/- 2.0 vs. 13.0 +/- 1.1 Somogyi units/micrograms DNA, P < 0.01). The responsiveness to fluoride, a direct activator of guanine nucleotide-binding protein, in the OLETF rat acini was similar to that in the LETO rat, suggesting that the transmembrane signaling and effectors and subsequent intracellular signal transduction molecules in the OLETF rat acini are normal. Moreover, 125I-CCK binding to the acini prepared from the OLETF rat was totally absent. These present results indicate that the OLETF rat has a selective defect in the binding of CCK to its receptors on the acinar cell surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.