Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis and recurrence. Cancer stem cells (CSCs), which are pluripotent, self-renewable, and capable of forming tumors, contribute to PDAC initiation and metastasis and are responsible for resistance to chemotherapy and radiation. Three types of experimental methods are commonly used to identify CSCs: CSC-specific marker detection, a sphere-formation assay that reveals cell proliferation under non-adherent conditions, and detection of side-population (SP) cells that possess high intracellular-to-extracellular pump functions. Several CSC-specific markers have been reported in PDACs, including CD133, CD24, CD44, CXCR4, EpCAM, ABCG2, c-Met, ALDH-1, and nestin. There remains controversy regarding which markers are specific to PDAC CSCs and which are expressed alone or in combination in CSCs. Examining characteristics of isolated CSCs and discovering CSC-specific treatment options are important to improve the prognosis of PDAC cases. This review summarizes CSC-detection methods for PDAC, including CSC-marker detection, the sphere-formation assay, and detection of SP cells.
Pancreatic ductal adenocarcinoma (PDAC) is associated with a high incidence of hepatic metastases, as well as occasional pulmonary metastases. To delineate the potential role of cancer stem cells (CSCs) in PDAC metastasis, human PDAC cells were injected into the spleen of mice. The characteristics and expression of markers associated with CSC and epithelial-mesenchymal transition (EMT) of metastatic cells that developed in the liver and lung were then compared with parental cells. The metastatic cells were polygonal, and larger than parental cells. Metastatic cells also exhibited decreased proliferation and increased adhesion to extracellular matrices, as well as enhanced migration and invasion in vitro and increased metastatic capacity in vivo. The CSC markers ALDH1A1, ABCG2, and nestin were expressed at high levels in metastatic cells and exhibited changes consistent with EMT (eg, decreased E-cadherin expression). Moreover, metastatic cells readily formed spheres in culture and exhibited an increased side population by flow analysis. Nestin and ABCG2 were also expressed at high levels in metastatic lesions from PDAC patients, and silencing nestin with shRNA in PDAC cells derived from lung metastases resulted in a marked decrease in the capacity of the cells to form spheres and to yield pulmonary or hepatic metastases. Thus, the metastatic potential of human PDAC cells correlates with CSCs and with EMT characteristics and is dependent on nestin expression.
H19 is an oncofetal RNA expressed in the developing embryo as well as in bladder, breast, gastric, pancreatic, hepatocellular, and prostate cancers. Recent studies have shown that H19 enhances cancer invasion and metastasis; however, its roles in cancer remain controversial. In the current study, H19 exhibited the second largest increase (82.4-fold) and represented the only non-protein coding gene among 11 genes identified that were elevated over 10-fold in lung-metastasis-derived pancreatic cancer cells compared with their parental cells using a mouse metastatic model. Subsequently, we further clarified the roles of H19 in pancreatic cancer growth and metastasis using in vitro and in vivo techniques. In situ hybridization showed that H19 was detected in 23 of 139 invasive ductal carcinomas (17%), and that H19 expression positively correlated with higher histological grades (P < 0.0001). Overexpression of H19 in PANC-1 pancreatic cancer cells induced higher motilities, whereas H19 inhibition using shRNA and siRNA showed opposite results; however, cell growth rates were not impacted. Intravenous injection of H19 shRNA vector-transfected PANC-1 cells yielded marked inhibition of metastasis in the liver and lungs of immunodeficient mice. These findings suggest that H19 has important roles in pancreatic cancer metastasis, and that inhibition of H19 represents a novel candidate for pancreatic cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.