Background: Bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) are potential cellular sources of therapeutic stem cells. MSCs are a multipotent population of cells capable of differentiating into a number of mesodermal lineages. Treatment using MSCs appears to be a helpful approach for structural restoration in regenerative medicine. Correct identification of these cells is necessary, but there is inadequate information on the MSC profile of cell surface markers and mRNA expression in dogs. In this study, we performed molecular characterization of canine BM-MSCs and AT-MSCs using immunological and mRNA expression analysis.
H19 is an oncofetal RNA expressed in the developing embryo as well as in bladder, breast, gastric, pancreatic, hepatocellular, and prostate cancers. Recent studies have shown that H19 enhances cancer invasion and metastasis; however, its roles in cancer remain controversial. In the current study, H19 exhibited the second largest increase (82.4-fold) and represented the only non-protein coding gene among 11 genes identified that were elevated over 10-fold in lung-metastasis-derived pancreatic cancer cells compared with their parental cells using a mouse metastatic model. Subsequently, we further clarified the roles of H19 in pancreatic cancer growth and metastasis using in vitro and in vivo techniques. In situ hybridization showed that H19 was detected in 23 of 139 invasive ductal carcinomas (17%), and that H19 expression positively correlated with higher histological grades (P < 0.0001). Overexpression of H19 in PANC-1 pancreatic cancer cells induced higher motilities, whereas H19 inhibition using shRNA and siRNA showed opposite results; however, cell growth rates were not impacted. Intravenous injection of H19 shRNA vector-transfected PANC-1 cells yielded marked inhibition of metastasis in the liver and lungs of immunodeficient mice. These findings suggest that H19 has important roles in pancreatic cancer metastasis, and that inhibition of H19 represents a novel candidate for pancreatic cancer therapy.
Pancreatic cancer, composed of heterogeneous cancer cells, alters epithelial to mesenchymal features during growth and metastasis. In this study, we aimed to characterize pancreatic ductal adenocarcinoma (PDAC) cells showing epithelial or mesenchymal features in 3D culture. In 3D culture, PK-1 cells had high E-cadherin and low vimentin expression and exhibited a round-like appearance encircled by flat cells. PANC-1 cells had high vimentin and low E-cadherin expression and formed grape-like spheres. PK-1 cells had secretary granules and many microvilli, desmosomes, and adherens junctions, while PANC-1 cells had few microvilli, adherens junction, and no desmosomes. Cytokeratin 7, trypsin, CA19-9, and E-cadherin were highly expressed in PK-1 cells but not in PANC-1 cells. Ki-67 was diffusely expressed in PANC-1 spheres but was restricted to the peripheral flat cells of PK-1 spheres. PANC-1 and PK-1 cells were positive for transforming growth factor (TGF) β receptor II and phosphorylated smad2/3, but PK-1 cells were smad4 negative. Taken together, 3D culture enhanced morphofunctional differences of PDAC cells showing epithelial or mesenchymal characteristics, and epithelial phenotype maintenance may be due to the ineffectiveness of the TGF-β pathway. Clarification of heterogeneity using 3D culture may be useful for development of individualized diagnostic and therapeutic methods in patients with PDAC. Due to the development of early detection methods and new treatments including surgery, chemotherapy, radiotherapy, and immunotherapy for cancers, the average survival rates of major cancers are over 50% 1. However, the five-year survival rate for patients with pancreatic cancer is only 8% 2. Pancreatic ductal adenocarcinoma (PDAC) is a major histological pancreatic cancer subtype. While surgical treatment offers the only possible cure for PDAC, 80% of patients with PDAC are inoperable at diagnosis. Even after surgery, the five-year survival rate is 15-20%, due to the high PDAC metastatic rate and local recurrence 3. Currently, chemotherapies or chemoradiotherapies are able to reduce tumor size and improve the prognosis, but these treatments do not fully cure the patients. Morbidity and mortality of PDAC are high in aged people and the worldwide progressive aging of society suggests a rapid increase in pancreatic cancer related deaths in the near future 4. Recent studies have shown that cancer stem cells (CSCs) contribute to the heterogeneity of various cancers. The "stem cell theory" of cancer implies that CSCs are responsible for tumor initiation, growth, and metastasis.
Genetic, transcriptional, and morphological differences have been reported in pancreatic ductal adenocarcinoma (PDAC) cases. We recently found that epithelial or mesenchymal features were enhanced in three-dimensional (3D) cultures compared to two-dimensional (2D) cultures. In this study, we examined the differences in the morphological and functional characteristics of eight PDAC cell lines in 2D and 3D cultures. Most PDAC cells showed similar pleomorphic morphologies in 2D culture. Under 3D culture, PDAC cells with high E-cadherin and low vimentin expression levels (epithelial) formed small round spheres encircled with flat lining cells, whereas those with high vimentin and low E-cadherin expression levels (mesenchymal) formed large grape-like spheres without lining cells and were highly proliferative. In 3D culture, gemcitabine was more effective for the spheres formed by PDAC cells with epithelial features, while abraxane was more effective on those with mesenchymal features. The expression levels of drug transporters were highest PDAC cells with high vimentin expression levels. These findings indicate that PDAC cells possess various levels of epithelial and mesenchymal characteristics. The 3D-culture method is useful for investigating the diversity of PDAC cell lines and may play important roles in the development of personalized early diagnostic methods and anticancer drugs for PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.