We establish equivalent conditions for the existence of an integrable or locally integrable fixed point for a Markov operator with the maximal support. Maximal support means that almost all initial points will concentrate on the support of the invariant density under the iteration of the process. One of the equivalent conditions for the existence of a locally integrable fixed point is weak almost periodicity of the jump operator with respect to some sweep-out set. This result includes the case of the existence of an absolutely continuous σ-finite invariant measure when we consider a nonsingular transformation on a probability space. Weak almost periodicity implies the Jacobs-Deleeuw-Glicksberg splitting and we show that constrictive Markov operators which guarantee the spectral decomposition are typical weakly almost periodic operators.
For an annealed type random dynamical system arising from non-uniformly expanding maps which admits uniformly contractive branches, we establish the existence of an absolutely continuous [Formula: see text]-finite invariant measure. We also show when the invariant measure is infinite.
In their recent paper, Hata and Yano (2021 Stoch. Dyn. 2350006) first gave an example of random iterations of two piecewise linear interval maps without (deterministic) indifferent periodic points for which the arcsine law—a characterization of intermittent dynamics in infinite ergodic theory—holds. The key in the proof of the result is the existence of a Markov partition preserved by each interval maps. In the present paper, we give a class of random iterations of two interval maps without indifferent periodic points but satisfying the arcsine law, by introducing a concept of core random dynamics. As applications, we show that the generalized arcsine law holds for generalized Hata–Yano maps and piecewise linear versions of Gharaei–Homburg maps, both of which do not have a Markov partition in general.
<p style='text-indent:20px;'>It has been recently realized that for abundant dynamical systems on a compact manifold, the set of points for which Lyapunov exponents fail to exist, called the Lyapunov irregular set, has positive Lebesgue measure. In the present paper, we show that under any physical noise, the Lyapunov irregular set has zero Lebesgue measure and the number of such Lyapunov exponents is finite. This result is a Lyapunov exponent version of Araújo's theorem on the existence and finitude of time averages. Furthermore, we numerically compute the Lyapunov exponents for a surface flow with an attracting heteroclinic connection, which enjoys the Lyapunov irregular set of positive Lebesgue measure, under a physical noise. This paper also contains the proof of the disappearance of Lyapunov irregular behavior on a positive Lebesgue measure set for a surface flow with an attracting homoclinic/heteroclinic connection under a non-physical noise.</p>
We show the existence of Lebesgue-equivalent conservative and ergodic σ-finite invariant measures for a wide class of one-dimensional random maps consisting of piecewise convex maps. We also estimate the size of invariant measures around a small neighborhood of a fixed point where the invariant density functions may diverge. Application covers random intermittent maps with critical points or flat points. We also illustrate that the size of invariant measures tends to infinite for random maps whose right branches exhibit a strongly contracting property on average, so that they have a strong recurrence to a fixed point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.