The strategies involved in the development of therapeutics for neurodegenerative disorders are very complex and challenging due to the existence of the blood-brain barrier (BBB), a closely spaced network of blood vessels and endothelial cells that functions to prevent the entry of unwanted substances in the brain. The emergence and advancement of nanotechnology shows favourable prospects to overcome this phenomenon. Engineered nanoparticles conjugated with drug moieties and imaging agents that have dimensions between 1 and 100 nm could potentially be used to ensure enhanced efficacy, cellular uptake, specific transport, and delivery of specific molecules to the brain, owing to their modified physico-chemical features. The conjugates of nanoparticles and medicinal plants, or their components known as nano phytomedicine, have been gaining significance lately in the development of novel neuro-therapeutics owing to their natural abundance, promising targeted delivery to the brain, and lesser potential to show adverse effects. In the present review, the promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed. Nanotechnology-based efforts performed in bioinformatics for early diagnosis as well as futuristic precision medicine in ND have also been discussed in the context of computational approach.
Blockchain and artificial intelligence technologies are novel innovations in healthcare sector. Data on healthcare indices are collected from data published on Web of Sciences and other Google survey from various governing bodies. In this review, we focused on various aspects of blockchain and artificial intelligence and also discussed about integrating both technologies for making a significant difference in healthcare by promoting the implementation of a generalizable analytical technology that can be integrated into a more comprehensive risk management approach. This article has shown the various possibilities of creating reliable artificial intelligence models in e-Health using blockchain, which is an open network for the sharing and authorization of information. Healthcare professionals will have access to the blockchain to display the medical records of the patient, and AI uses a variety of proposed algorithms and decision-making capability, as well as large quantities of data. Thus, by integrating the latest advances of these technologies, the medical system will have improved service efficiency, reduced costs, and democratized healthcare. Blockchain enables the storage of cryptographic records, which AI needs.
Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.
In the present study, chitosan/polyvinyl alcohol (PVA)-based honey hydrogel films were developed for potential wound healing application. The hydrogel films were developed by a solvent-casting method and were evaluated in terms of thickness, weight variation, folding endurance, moisture content and moisture uptake. The water vapor transmission rate was found to range between 1650.50 ± 35.86 and 2698.65 ± 76.29 g/m2/day. The tensile strength and elongation at break were found to range between 4.74 ± 0.83 and 38.36 ± 5.39 N, and 30.58 ± 3.64 and 33.51 ± 2.47 mm, respectively, indicating significant mechanical properties of the films. SEM images indicated smooth surface morphology of the films. FTIR, DSC and in silico analysis were performed, which highlighted the docking energies of the protein–ligand complex and binding interactions such as hydrogen bonding, Pi–Pi bonding, and Pi–H bonding between the selected compounds and target proteins; hence, we concluded, with the three best molecules (lumichrome, galagin and chitosan), that there was wound healing potential. In vitro studies pointed toward a sustained release of honey from the films. The antimicrobial performance of the films was investigated against Staphylococcus aureus. Overall, the results signaled the potential application of chitosan/PVA based hydrogel films as wound dressings. Furthermore, in vivo experiments may be required to evaluate the clinical efficacy of honey-loaded chitosan/PVA hydrogel films in wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.