Systems that rely on forecasts to make decisions, e.g. control or energy trading systems, require frequent updates of the forecasts. Usually, the forecasts are updated whenever new observations become available, hence in an online setting. We present the R package onlineforecast that provides a generalized setup of data and models for online forecasting. It has functionality for time-adaptive fitting of linear regression-based models. Furthermore, dynamical and non-linear effects can be easily included in the models. The setup is tailored to enable effective use of forecasts as model inputs, e.g. numerical weather forecast. Users can create new models for their particular system applications and run models in an operational online setting. The package also allows users to easily replace parts of the setup, e.g. use kernel or neural network methods for estimation. The package comes with comprehensive vignettes and examples of online forecasting applications in energy systems, but can easily be applied in all fields where online forecasting is used.
Smart and flexible operation of components in district heating systems can play a crucial role in integrating larger shares of renewable energy sources in energy systems. Buildings are one of the crucial components that will enable flexibility in the district heating by using intelligent operation. Recent work suggests that such improved operation at the same time can increase thermal comfort and lower economic costs. We have digitalised the heating system in a Danish school by adding IoT devices, such as smart thermostats and temperature sensors to demonstrate the possibilities of making buildings smart. Based on experimental data, this paper introduces a non-linear grey-box model of the thermal dynamics of the building. A non-linear model predictive control method is presented for the thermostatic set-point control of the building's radiators. Based on the building model and the control algorithm, simulation studies are carried out to show the flexibility potential of the building. When used for lowering the return temperature the results suggest that operational costs can be lowered by around 10% using predictive control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.