Single electron transfer (SET) promoted photoaddition reactions of secondary N-α-trimethylsilyl-N-alkylamines to C were explored to gain a deeper understanding of the mechanistic pathways followed and to expand the library of novel types of organofullerenes that can be generated using this approach. The results show that photoreactions of 10% EtOH-toluene solutions containing C and N-α-trimethylsilyl-N-alkylamines produce either aminomethyl-1,2-dihydrofullerenes or symmetric fulleropyrrolidines as major products depending on the nature of alkyl substituents. In contrast, photoreactions of 10% EtOH-ODCB solutions of these amines with C mainly lead to the formation of symmetric fulleropyrrolidines. Based on the analysis of product distributions and the results of earlier studies, two feasible mechanistic pathways are proposed for these processes. One route is initiated by SET from the amine substrates to the triplet-excited state of C to form the corresponding aminium radicals and C anion radicals. EtOH-promoted desilylation of the aminium radicals then takes place to produce aminomethyl radicals which can either add to C or couple with the C radical anions to form respective radicals or anion precursors of aminomethyl-1,2-dihydrofullerene products. The competing pathway leading to the generation of symmetric fulleropyrrolidines also involves the formation of aminomethyl radicals by using the sequential SET-desilylation process. In this route, the aminomethyl radicals are oxidized by SET to C to form iminium ions, which are then transformed to azomethine ylides by a pathway involving a second molecule of the secondary amine. Dipolar cycloaddition of the azomethine ylides to C forms the symmetric fulleropyrrolidine cycloadducts. Importantly, the observation that symmetric fulleropyrrolidines are the sole products formed in photoreactions between N-α-trimethylsilyl-N-alkylamines and C in 10% EtOH-ODCB has synthetic significance.
Photoreactions between C60 and secondary N-trimethylsilylmethyl-N-benzylamines were explored to evaluate the feasibility of a new method for secondary aminomethylation of electron acceptors. The results show that photoreactions of C60 with these secondary amines in 10% EtOH-toluene occur to form aminomethyl-1,2-dihydrofullerenes predominantly through a pathway involving single electron transfer (SET)-promoted formation of secondary aminium radicals followed by preferential loss of the α-trimethylsilyl group. The aminomethyl radicals formed in this manner then couple with C60 or C60(•-) to form radical or anion precursors of the aminomethyl-1,2-dihydrofullerenes. In contrast to thermal and photochemical strategies developed previously, the new SET photochemical approach using α-trimethylsilyl-substituted secondary amines is both mild and efficient, and as a result, it should be useful in broadening the library of substituted fullerenes. Moreover, the results should have an impact on the design of SET-promoted C-C bond forming reactions. Specifically, introduction of an α-trimethylsilyl group leads to a change in the chemoselectivity of SET-promoted reactions of secondary amines with acceptors that typically favor aminium radical N-H deprotonation, leading to N-C bond formation. Finally, symmetric and unsymmetric fulleropyrrolidines are also generated in yields that are highly dependent on the electronic properties of arene ring substituents in amines, irradiation time, and solvent.
ABSTRACT. Investigation was conducted to examine whether photochemical reaction of N-(tributylstannyl)-methylphthalimide generates an azomethine ylide intermediate in its excited state as its silyl derivative N-(trimethylsilyl)methylphthalimide which has been observed to form an azomethine ylide. The irradiation of N-(tributylstannyl)methylphthalimide in D2O-CH3CN generates mono-deuterated N-methylphthalimide as an exclusive product which supports the efficient generation of azomethine ylide intermediate and its trapping by water molecule through a proto-destannylation pathway. However the generated tributylstannyl subsitiuted ylide was not observed to be trapped with a dipolarophile such as methyl acrylate and acrylonitrile present in the reactions which is in contrast with the ylide from N-(trimethylsilyl)methylphthalimide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.