Antroquinonol, which was first isolated from a mushroom, Antrodia cinnamomea, found in Taiwan, is an anticancer compound with a unique core structure of 4-hydroxy-2,3-dimethoxycyclohex-2-enone carrying methyl, farnesyl and hydroxyl substituents in the 4,5-cis-5,6-trans configuration. A short synthesis of (±)-antroquinonol is accomplished in seven steps from 2,3,4-trimethoxyphenol, which is oxidized in methanol to a highly electron-rich substrate of 2,3,4,4-tetramethoxycyclohexadienone and then a Michael reaction with dimethylcuprate is performed as the key step, followed by alkylation, reduction and epimerization to incorporate the required substituents at three contiguous stereocenters.
Polyene cyclization of the titled compounds under catalysis with AlCl(3)/SnCl(4) gave rise to the corresponding polycyclic products, many of which were structurally highly unexpected, and thus, individual X-ray analysis was required to finalize the structural identification. Mechanistically, an unusual 1,2-hydride shift is proposed to elucidate the product formation.
The site selectivity for lysine conjugation on a native protein is difficult to control and characterize. Here, we applied mass spectrometry to examine the conjugation kinetics of Trastuzumab-IgG (Her-IgG) and α-lactalbumin under excess linker concentration ([L]0) based on the modified Michaelis–Menten equation, in which the initial rate constant per amine (kNH2 = Vmax/NH2/KM) was determined by the maximum reaction rate (Vmax/NH2) under saturated accessible sites and initial amine–linker affinity (1/KM). Reductive amination (RA) displayed 3–4 times greater Vmax/NH2 and a different panel of conjugation sites than that observed for N-hydroxysuccinimide ester (NHS) chemistry using the same length of polyethylene glycol (PEG) linkers. Moreover, faster conversion power rendered RA site selectivity among accessible amine groups and a greater tunable range of linker/protein ratio for aldehyde-linkers compared to those of the same length of NHS-linkers. Single conjugation with high yield or poly-conjugations with site homogeneity was demonstrated by controlling [L]0 or gradual addition to minimize the [L]0/KM ratio. Formaldehyde, the shortest aldehyde-linker with the greatest 1/KM, exhibited the highest selectivity and was shown to be a suitable probe to predict conjugation profile of aldehyde-linkers. Four linkers on the few probe-predicted hot spots were elucidated by kinetically controlled RA with conserved drug efficacy when conjugated with the payload. This study provides insights into controlling factors for homogenous and predictable amine bioconjugation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.