The initial stages of solidification near the meniscus during continuous casting of steel slabs involve many complex inter-related transient phenomena, which cause periodic oscillation marks (OMs), subsurface hooks, and related surface defects. This article presents a detailed mechanism for the formation of curved hooks and their associated OMs, based on a careful analysis of numerous specially etched samples from ultra-low-carbon steel slabs combined with previous measurements, observations, and theoretical modeling results. It is demonstrated that hooks form by solidification and dendritic growth at the liquid meniscus during the negative strip time. Oscillation marks form when molten steel overflows over the curved hook and solidifies by nucleation of undercooled liquid. The mechanism has been justified by its explanation of several plant observations, including the variability of hook and OM characteristics under different casting conditions, and the relationships with mold powder consumption and negative/positive strip times.
Subsurface hook formation during initial solidification in the continuous casting mould degrades the quality of steel slabs owing to the associated entrapment of argon bubbles and non-metallic inclusions. To minimise hook depth and to improve slab quality, extensive plant experiments were performed and analysed to quantify the effect of casting parameters on hook characteristics using the no. 2-1 caster at POSCO Gwangyang Works, Korea. The results reveal that meniscus heat flux plays an important role in controlling hook characteristics. Hook depth correlates with oscillation mark depth, hook shell thickness, and hook length. Based on regression analysis, this paper proposes an equation to predict hook depth in ultra-low-carbon steels as a function of casting speed, superheat, oscillation frequency, surface level fluctuations, and mould flux properties. Use of this quantitative equation enables improved control of subsurface quality in the continuous casting of steel slabs.
In Korea, a good recycled product (GR) certification system was introduced in 1997 to improve resource and energy use efficiency. However, in industry and society, recycled products are not used well because of the lack of awareness of recycled materials. In this study, the status of domestic and international quality standards for nickel materials was investigated, and the purity and electrochemical properties of nickel sulfate prepared from ore and nickel sulfate recovered from waste lithium-ion batteries were evaluated during the electroplating process. As a result of the test, it was found that there is no quality difference between recycled nickel sulfate and high-purity nickel sulfate reagents when used in the electroplating industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.