The single nucleotide polymorphism rs9939609 of the gene FTO, which encodes fat mass and obesity–associated protein, is strongly associated with obesity and type 2 diabetes (T2D) in multiple populations; however, the underlying mechanism of this association is unclear. The present study aimed to investigate FTO genotype–dependent metabolic changes in obesity and T2D. To elucidate metabolic dysregulation associated with disease risk genotype, genomic and metabolomic datasets were recruited from 2,577 participants of the Korean Association REsource (KARE) cohort, including 40 homozygous carriers of the FTO risk allele (AA), 570 heterozygous carriers (AT), and 1,967 participants carrying no risk allele (TT). A total of 134 serum metabolites were quantified using a targeted metabolomics approach. Through comparison of various statistical methods, seven metabolites were identified that are significantly altered in obesity and T2D based on the FTO risk allele (adjusted p < 0.05). These identified metabolites are relevant to phosphatidylcholine metabolic pathway, and previously reported to be metabolic markers of obesity and T2D. In conclusion, using metabolomics with the information from genome-wide association studies revealed significantly altered metabolites depending on the FTO genotype in complex disorders. This study may contribute to a better understanding of the biological mechanisms linking obesity and T2D.
Dilated cardiomyopathy (DCM) is one of the main causes of heart failure (called cardiomyopathies) in adults. Alterations in epigenetic regulation (i.e., DNA methylation) have been implicated in the development of DCM. Here, we identified a total of 1828 differentially methylated probes (DMPs) using the Infinium 450K HumanMethylation Bead chip by comparing the methylomes between 18 left ventricles and 9 right ventricles. Alterations in DNA methylation levels were observed mainly in lowly methylated regions corresponding to promoter-proximal regions, which become hypermethylated in severely affected left ventricles. Subsequent mRNA microarray analysis showed that the effect of DNA methylation on gene expression regulation is not unidirectional but is controlled by the functional sub-network context. DMPs were significantly enriched in the transcription factor binding sites (TFBSs) we tested. Alterations in DNA methylation were specifically enriched in the cis-regulatory regions of cardiac development genes, the majority of which are involved in ventricular development (e.g., TBX5 and HAND1).
Glycated hemoglobin (HbA1c) is an indicator of the average blood glucose concentration. Failing to control HbA1c levels can accelerate the development of complications in patients with diabetes. Although metabolite profiles associated with HbA1c level in diabetes patients have been characterized using different platforms, more studies using high-throughput technology will be helpful to identify additional metabolites related to diabetes. Type 2 diabetes (T2D) patients were divided into two groups based on the HbA1c level: normal (HbA1c ≤6%) and high (HbA1c ≥9%) in both discovery and replication sets. A targeted metabolomics approach was used to quantify serum metabolites and multivariate logistic regression was used to identify significant differences between groups. The concentrations of 22 metabolites differed significantly between the two groups in the discovery set. In the replication set, the levels of 21 metabolites, including 16 metabolites identified in the discovery set, differed between groups. Among these, concentrations of eleven amino acids and one phosphatidylcholine (PC), lysoPC a C16:1, were higher and four metabolites, including three PCs (PC ae C36:1, PC aa C26:0, PC aa C34:2) and hexose, were lower in the group with normal HbA1c group than in the group with high HbA1c. Metabolites with high concentrations in the normal HbA1c group, such as glycine, valine, and PCs, may contribute to reducing HbA1c levels in patients with T2D. The metabolite signatures identified in this study provide insight into the mechanisms underlying changes in HbA1c levels in T2D.
This study investigated whether the promoter region of DNA methylation positively or negatively regulates tissue-specific genes (TSGs) and if it correlates with disease pathophysiology. We assessed tissue specificity metrics in five human tissues, using sequencing-based approaches, including 52 whole genome bisulfite sequencing (WGBS), 52 RNA-seq, and 144 chromatin immunoprecipitation sequencing (ChIP-seq) data. A correlation analysis was performed between the gene expression and DNA methylation levels of the TSG promoter region. The TSG enrichment analyses were conducted in the gene–disease association network (DisGeNET). The epigenomic association analyses of CpGs in enriched TSG promoters were performed using 1986 Infinium MethylationEPIC array data. A correlation analysis showed significant associations between the promoter methylation and 449 TSGs’ expression. A disease enrichment analysis showed that diabetes- and obesity-related diseases were high-ranked. In an epigenomic association analysis based on obesity, 62 CpGs showed statistical significance. Among them, three obesity-related CpGs were newly identified and replicated with statistical significance in independent data. In particular, a CpG (cg17075888 of PDK4), considered as potential therapeutic targets, were associated with complex diseases, including obesity and type 2 diabetes. The methylation changes in a substantial number of the TSG promoters showed a significant association with metabolic diseases. Collectively, our findings provided strong evidence of the relationship between tissue-specific patterns of epigenetic changes and metabolic diseases.
Alterations in DNA methylation and gene expression have been implicated in the development of human dilated cardiomyopathy (DCM). Differentially methylated probes (DMPs) and differentially expressed genes (DEGs) were identified between the left ventricle (LV, a pathological locus for DCM) and the right ventricle (RV, a proxy for normal hearts). The data in this DiB are for supporting our report entitled “Methylome analysis reveals alterations in DNA methylation in the regulatory regions of left ventricle development genes in human dilated cardiomyopathy” (Bong-Seok Jo, In-Uk Koh, Jae-Bum Bae, Ho-Yeong Yu, Eun-Seok Jeon, Hae-Young Lee, Jae-Joong Kim, Murim Choi, Sun Shim Choi, 2016) [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.