Under ambient light illumination, silver nanoparticles can be synthesized by a triblock copolymer induced reduction of [Ag(NH3)2]+ ions in ethanol. Conventional chemical reducing agents, thermal treatment, and radiation sources are no longer necessary in this novel approach. A possible mechanism was proposed to explain the formation and stabilization of silver nanoparticles based on UV−vis absorption spectra and transmission electron microscopy results. This novel ambient light route has been successfully applied to deposit silver nanoclusters on TiO2. Silver nanoclusters of about 2 nm in size were found to strongly anchor to the TiO2 nanoparticles with high dispersion. The resulting silver-coated TiO2 material with optimal silver loading showed enhanced photocatalytic and bactericidal activities compared to the uncoated TiO2. The reasons for the enhancements of the activities were discussed.
Whole-genome duplication (WGD) results in new genomic resources that can be exploited by evolution for rewiring genetic regulatory networks in organisms. In metazoans, WGD occurred before the last common ancestor of vertebrates, and has been postulated as a major evolutionary force that contributed to their speciation and diversification of morphological structures. Here, we have sequenced genomes from three of the four extant species of horseshoe crabs-Carcinoscorpius rotundicauda, Limulus polyphemus and Tachypleus tridentatus. Phylogenetic and sequence analyses of their Hox and other homeobox genes, which encode crucial transcription factors and have been used as indicators of WGD in animals, strongly suggests that WGD happened before the last common ancestor of these marine chelicerates 4135 million years ago. Signatures of subfunctionalisation of paralogues of Hox genes are revealed in the appendages of two species of horseshoe crabs. Further, residual homeobox pseudogenes are observed in the three lineages. The existence of WGD in the horseshoe crabs, noted for relative morphological stasis over geological time, suggests that genomic diversity need not always be reflected phenotypically, in contrast to the suggested situation in vertebrates. This study provides evidence of ancient WGD in the ecdysozoan lineage, and reveals new opportunities for studying genomic and regulatory evolution after WGD in the Metazoa.
The precipitation of cadmium sulfide nanoparticles is induced on the surface of Escherichia coli, and the biological hydrogen production efficiency under visible light (VL) irradiation is investigated. When endogenous [Ni–Fe]‐hydrogenase is anaerobically induced, an additional 400 µmol of hydrogen gas is generated within 3 h from the hybrid system suspension (50 mL) under VL irradiation (2000 W m−2), corresponding to an increase in hydrogen production of ≈30%. The apparent quantum efficiencies of the hybrid system under 470 and 620 nm VL irradiation are 7.93% and 9.59%, respectively, which are higher than those of many photoheterotrophic bacteria. Furthermore, the mechanism of the enhanced hydrogen evolution is investigated. The interaction between photogenerated electrons and cells of E. coli is confirmed by heat‐treatment, electron‐scavenger, and separation studies. The acceleration of pyruvate generation, inhibition of lactate fermentation, increase of formate concentration, stimulation of hydrogenase activity, and elevation of nicotinamide adenine dinucleotide (NAD)H/NAD ratio in the hybrid system are responsible for the enhanced hydrogen production. A feasibility study is also conducted using wastewater and natural sunlight for the hydrogen production by the hybrid system. An additional 120 µmol of hydrogen is generated from the hybrid system within 3 h under these conditions using natural resources.
Bismuth vanadate nanotube (BV-NT), synthesized by a template-free solvothermal method, was used as an effective visible-light-driven (VLD) photocatalyst for inactivation of Escherichia coli K-12. The mechanism of photocatalytic bacterial inactivation was investigated by employing multiple scavengers combined with a simple partition system. The VLD photocatalytic bacterial inactivation by BV-NT did not allow any bacterial regrowth. The photogenerated h(+) and reactive oxidative species derived from h(+), such as OH(ads), H(2)O(2) and HO(2)/O(2)(-), were the major reactive species for bacterial inactivation. The inactivation by h(+) and OH(ads) required close contact between the BV-NT and bacterial cells, and only a limited amount of H(2)O(2) could diffuse into the solution to inactivate bacterial cells. The direct oxidation effect of h(+) to bacterial cells was confirmed by adopting F(-) surface modification and anaerobic experiments. The bacterial cells could trap e(-) in order to minimize e(-)-h(+) recombination, especially under anaerobic condition. Transmission electron microscopic study indicated the destruction process of bacterial cell began from the cell wall to other cellular components. The OH(ads) was postulated to be more important than OH(bulk) and was not supposed to be released very easily in the BV-NT bacterial inactivation system.
The photocatalytic disinfection capability of the natural semiconducting mineral sphalerite is studied here for the first time. Natural sphalerite can completely inactivate 1.5 × 10(7) cfu/mL E. coli K-12 within 6 h under visible light irradiation. The photocatalytic disinfection mechanism of natural sphalerite is investigated using multiple scavengers. The critical role that electrons play in bactericidal actions is experimentally demonstrated. The involvement of H(2)O(2) in photocatalytic disinfection is also confirmed using a partition system combined with different scavengers. Moreover, the photocatalytic destruction of bacterial cells is observed through transmission electron microscopic analysis. A catalase activity study reveals that antioxidative enzyme activity is high in the initial stage of photocatalytic disinfection but decreases with time due to damage to enzymatic functioning. Natural sphalerite is abundant and easy to obtain and possesses excellent visible-light photocatalytic activity. These superior properties make it a promising solar-driven photocatalyst for large-scale cost-effective wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.