MicroRNAs (miRNA) are small noncoding RNAs that regulate gene expression in human diseases, including lung cancer. miRNAs have oncogenic and nononcogenic functions in lung cancer. In this study, we report the identification of a novel miRNA, miR-7515, from lung cancer cells. The novel miR-7515 was characterized using various predictive programs and experimental methods. miR-7515 was able to forming a stem-loop structure and its sequence was conserved in mammals. The expression level of miR-7515 in lung cancer cells and tissues was profiled using TaqMan miRNA assays. miR-7515 was downregulated in lung cancer compared with normal human lung cells and tissues. The target of miR-7515 was determined using a dual luciferase reporter assay.
IntroductionThe first microRNA (miRNA) was discovered in Caenorhabditis elegans, (1, 2) and there are currently more than 1,500 human miRNAs listed in miRBase (http://microrna.sanger.ac.uk/index.shtml; ref. 3). miRNAs are endogenous noncoding RNAs that are 18 to 25 nucleotides (nt) in length and are derived from 60 to 80 nt precursor miRNAs refs. 4,5). The stepwise processing of miRNAs requires the double strand-specific ribonuclease (Drosha), the RNase III enzyme Dicer, and the
MicroRNAs (miRNAs) are a class of small noncoding RNAs that negatively regulate gene expression through binding to 3' untranslated region. We identified and characterized the novel miRNA, miR-7641, in human mesenchymal stem cells. The expression of miR-7641 was downregulated during differentiation from human embryonic stem cells to endothelial cells. The CXCL1, a member of the CXC chemokine family, is known as promoting neovascularization by binding G-protein coupled receptors and is related to endothelial cells biogenesis such as angiogenesis, and it was predicted as target gene of miR-7641 by computerized analysis and the luciferase reporter assay. The miR-7641 significantly suppressed CXCL1 of transcriptional and post-translational levels. These data suggest that miR-7641 might be related with differentiation of human endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.