An oxidative cyclization reaction transforms nonemissive azoanilines into highly fluorescent benzotriazoles. We have found that introduction of multiple electron-donating amino groups onto a simple o-(phenylazo)aniline platform dramatically accelerates its conversion to the emissive polycyclic product. Notably, this chemistry can be effected by μM-level concentrations of copper(II) ion in water (pH = 6-8) at room temperature to elicit >80-fold enhancement in the green emission at λ(em) = 530 nm. Comparative kinetic and electrochemical studies on a series of structural analogues have established that the accelerated reaction rates correlate directly with a systematic cathodic shift in the oxidation onset potential of the azo precursors. In addition, single-crystal X-ray crystallographic analysis on the most reactive derivative revealed the presence of a five-membered ring intramolecular hydrogen-bonding network. An enhanced contribution of the quinoid-type resonance in such conformation apparently facilitates the mechanistically required proton transfer step, which, in conjunction with electron transfer at lower oxidation potential, contributes to a rapid cyclization reaction triggered by copper(II) ion in water.
An efficient triple azo coupling reaction between anilines and phloroglucinol furnished a series of C(3)-symmetric molecules 7-9 supporting multiple conjugation pathways that converge at the molecular core. A combination of (1)H/(13)C NMR spectroscopy, X-ray crystallography, and density functional theory computational studies provided a coherent picture of the [n,pi]-conjugated molecular core, which is best described as the tris(hydrazone) [rather than tris(azo)] tautomer stabilized by resonance-assisted hydrogen bonding. For a homologous series of compounds, an increase in the torsional angles between the planar molecular core and the peripheral aryl groups results in a systematic blue shift in the low-energy electronic transitions (7, 523 nm; 8, 505 nm; 9, 445 nm in CHCl(3)) that qualitatively correlates with the shrinkage of effective conjugation through structural distortion. Similar spectral shifts could also be induced by amine substrates that interact with the intramolecular hydrogen-bonding network to trigger bond-twisting motions. Specifically, a brief exposure of a thin film of 7 to vapor samples of butyl-, hexyl-, diethyl-, and diisopropylamine resulted in a rapid and reversible color change from pink to dark-orange. Under similar conditions, however, triethylamine did not elicit any detectable color change, despite the fact that it has a significantly higher vapor pressure than n-hexylamine. These findings implicate that the hydrogen-bonding donor ability is a key requirement for the binding-induced conformational switching, which allows for direct naked-eye detection of volatile amines under ambient conditions.
A counterintuitive observation of a faster signal relay over a longer linear distance prompted detailed kinetic studies of self-immolation reactions. With appropriate conformational bias, trigger-to-reporter signal transduction can take an efficient "shortcut" that outperforms conventional pathways involving repetitive quinone methide rearrangements and elimination.
A series of air-stable boron complexes 1-5 were prepared by using N-aryl iminopyrrolide ligands. Designed as minimalist structural mimics of the privileged BODIPY motif, these new BOIMPY (BOron complexes of IMinoPYrrolide ligands) fluorophores feature low molecular symmetry that promotes emission from CT-type excited states with large Stokes shifts and little self-quenching. Through comparative studies on the homologous set of compounds 1-4, we have confirmed that a delicate interplay between conformational twisting and donor-acceptor interaction dictates the mechanism of de-excitation, which responds sensitively to solvent polarity as well as protonation states. Over a wide visible spectral range, the structure-dependent light-emitting properties of BOIMPY molecules are well manifested, even in the solid-state. In order to exploit the environment-sensitive nature of CT-type emission, the BOIMPY motif was elaborated further into a bioprobe molecule 5. Live-cell fluorescence imaging studies have established that 5 is localized exclusively at lipid droplets to produce well-resolved staining patterns without affecting cell viability. These findings promise future elaboration of BOIMPY-based functional molecules for applications in biological imaging, chemical sensing, and molecular switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.