Currently, the implementation of hybrid proton-exchange membrane fuel cell (PEMFC)-battery-supercapacitor systems for hybrid tramways to replace conventional internal combustion engines and reduce greenhouse gas emissions has triggered an upward trend in developing energy management strategies (EMSs) to effectively deploy this integration. For this purpose, this paper introduces a comprehensive EMS consisting of high-level and low-level controls to achieve appropriate power distribution and stabilize the operating voltage of the powertrain. In the high-level control, a fuzzy logic technique and adaptive control loop are proposed to determine the reference power for energy sources under different working conditions. Meanwhile, the low-level control aims to generate a pulse-width-modulation (PWM) signal for DC/DC converter, associated with each electric source, to regulate the device’s output performance and guarantee the DC bus voltage. Comparisons between the proposed strategy with available approaches are conducted to verify the effectiveness of the proposed EMS through MATLAB/Simulink environment. The simulation results confirm that the proposed EMS not only sufficiently ensures powers distribution even when the abrupt changes of load or high peak power, but also enhance the efficiency of the PEMFC, in which the PEMFC stack efficiency can be exhibited up to 53% with hydrogen consumption less than 21.4%. Moreover, the DC bus voltage can be regulated with a small ripple of around 1%.
This paper presents a new control strategy that combines classical control and an optimization scheme to regulate the output voltage of the bidirectional converter under the presence of matched and mismatched disturbances. In detail, a control-oriented modeling method is presented first to capture the system dynamics in a common canonical form, allowing different disturbances to be considered. To estimate and compensate for unknown disturbances, an extended state observer (ESO)-based continuous sliding mode control is then proposed, which can guarantee high tracking precision, fast disturbance rejection, and chattering reduction. Next, an extremum seeking (ES)-based adaptive scheme is introduced to ensure system robustness as well as optimal control effort under different working scenarios. Finally, comparative simulations with classical proportional-integral-derivative (PID) control and constant switching gains are conducted to verify the effectiveness of the proposed adaptive control methodology through three case studies of load resistance variations, buck/boost mode switching, and input voltage variation.
This paper proposes a fault estimation and fault-tolerant control strategy with two observers for a pump-controlled electro-hydraulic system (PCEHS) under the presence of internal leakage faults and an external loading force. The mathematical model of the PCEHS is dedicatedly derived in the state-space form for developing control methodology. Two different observers are developed in which an extended state observer is applied to estimate the internal leakage flow rate, and a disturbance observer is used to deal with the external loading force. Then, the proposed control is designed based on the backstepping sliding mode technique in which estimated information from the observers is taken into consideration to guarantee the working performance of the system. With the proposed methodology, the robustness and stability of the controlled system are theoretically analyzed and proven by the Lyapunov theorem. Comparative simulation results are given to demonstrate the effectiveness of the proposed methodology through different testing conditions.
In consideration of accidental contact-loss due to step-change or accidentally moving out of a constrained framework, this paper focuses on solving this problem during working processes of an n-degree-of-freedom hydraulic manipulator (n-DOF manipulator). In order to overcome this phenomenon, a fault detection methodology-based virtual energy tank is employed with a shaping function to prevent the end-effector from damage or unexpected motion. This technique helps to detect when the contact-loss happens by a virtual energy variable; thus, decoupling a force control regulation. Moreover, a new trajectory for smooth motion after contact-loss detection is also discussed to increase system robustness. Additionally, to enhance tracking performance, adaptive laws are designed to compensate for system uncertainties. Comparative simulations are given on the n-DOF hydraulic manipulator to evaluate effectiveness of the impedance-based energy tank methodology under the sudden step-changed environment. Moreover, influences of control gains and setup energy parameters to the system behaviors when contact-loss happens are remarkably discussed as indispensable criteria for further development. The simulated results certified the superior effectiveness and reliability of the suggested methodology over the conventional impedance control for safe operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.