The human G-protein-coupled bitter taste receptor T2R38 has recently been demonstrated to be expressed on peripheral blood neutrophils, monocytes and lymphocytes. To further define a potential contribution of the T2R38 receptor in adaptive immune response, the objective of this study was to analyze its expression in resting and activated lymphocytes and T cell subpopulations. Freshly isolated PBMC from healthy donors were used for expression analysis by flow cytometry. Quantum™ MESF beads were applied for quantification in absolute fluorescence units. Activation methods of T cells were anti-CD3/CD28, phytohaemagglutinin (PHA) or phorbol 12-myristate 13-acetate (PMA) together with ionomycin. Lymphocytes from young donors expressed higher levels of T2R38 compared to the elderly. CD3+ T cells expressed higher levels that CD19+ B cells. Receptor expression followed T cell activation with an upregulation within 24 h and a peak at 72 h. Higher levels of T2R38 were produced in lymphocytes by stimulation with anti-CD3/CD28 compared to PHA or PMA/ionomycin. Both subpopulations of CD4+ as well as CD8+ T cells were found to express the T2R38 receptor; this was higher in CD4+ than CD8+ cells; the amount of T2R38 in central and effector memory cells was higher as compared to naïve cells, although this was not statistically significant for CD8+ cells without prior activation by anti-CD3/CD28. Upon treatment of PBMC with the natural T2R38 agonist goitrin Calcium flux was activated in the lymphocyte population with functional T2R38 receptor at >20 μM which was completely blocked by phospholipase Cβ-2 inhibitor U73211. Further, goitrin selectively inhibited TNF-alpha secretion in PBMC with functional T2R38. This quantitative analysis of T2R38 expression in distinct PBMC subsets may provide a basis for understanding the significance of bitter compounds in immune modulation. Whether these findings can have implications for the treatment of inflammatory and immunologic disorders by bitter tasting pharmaceuticals or foods needs further investigation.
Horseradish (Armoracia rusticana) is a perennial crop and its root is used in condiments. Traditionally, horseradish root is used to treat bacterial infections of the respiratory tract and urinary bladder. The antiphlogistic activity, determined in activated primary human peripheral blood mononuclear cells (PBMC), was evaluated for an aqueous extract and its subfractions, separated by HPLC. Compound analysis was done by UHPLC-QToF/MS and GC-MS. The aqueous extract concentration-dependently inhibited the anti-inflammatory response to lipopolysaccharide (LPS) in terms of TNF-α release at ≥37 μg/mL. Further, the cyclooxygenase as well as lipoxygenase pathway was blocked by the extract as demonstrated by inhibition of COX-2 protein expression and PGE2 synthesis at ≥4 μg/mL and leukotriene LTB4 release. Mechanistic studies revealed that inhibition of ERK1/2 and c-Jun activation preceded COX-2 suppression upon plant extract treatment in the presence of LPS. Chemical analysis identified target compounds with a medium polarity as relevant for the observed bioactivity. Importantly, allyl isothiocyanate, which is quite well known for its anti-inflammatory capacity and as the principal pungent constituent in horseradish roots, was not relevant for the observations. The results suggest that horseradish root exerts an antiphlogistic activity in human immune cells by regulation of the COX and LOX pathway via MAPK signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.