Lifelog can provide useful insights of our daily activities. It is essential to provide a flexible way for users to retrieve certain events or moments of interest, corresponding to a wide variation of query types. This motivates us to develop FIRST, a Flexible Interactive Retrieval SysTem, to help users to combine or integrate various query components in a flexible manner to handle different query scenarios, such as visual clustering data based on color histogram, visual similarity, GPS location, or scene attributes. We also employ personalized concept detection and image captioning to enhance image understanding from visual lifelog data, and develop an autoencoderlike approach for query text and image feature mapping. Furthermore, we refine the user interface of the retrieval system to better assist users in query expansion and verifying sequential events in a flexible temporal resolution to control the navigation speed through sequences of images. CCS CONCEPTS • Information systems → Search interfaces; Multimedia databases; • Human-centered computing → Interactive systems and tools.
Building a retrieval system with lifelogging data is more complicated than with ordinary data due to the redundancies, blurriness, massive amount of data, various sources of information accompanying lifelogging data, and especially the ad-hoc nature of queries. The Lifelog Search Challenge (LSC) is a benchmarking challenge that encourages researchers and developers to push the boundaries in lifelog retrieval. For LSC'22, we develop FIRST 3.0, a novel and flexible system that leverages expressive cross-domain embeddings to enhance the searching process. Our system aims to adaptively capture the semantics of an image at different levels of detail. We also propose to augment our system with an external search engine to help our system with initial visual examples for unfamiliar concepts. Finally, we organize image data in hierarchical clusters based on their visual similarity and location to assist users in data exploration. Experiments show that our system is both fast and effective in handling various retrieval scenarios.
CCS CONCEPTS• Information systems → Search interfaces; Multimedia databases; • Human-centered computing → Interactive systems and tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.