Post-OCR is an important processing step that follows optical character recognition (OCR) and is meant to improve the quality of OCR documents by detecting and correcting residual errors. This paper describes the results of a statistical analysis of OCR errors on four document collections. Five aspects related to general OCR errors are studied and compared with human-generated misspellings, including edit operations, length effects, erroneous character positions, real-word vs. non-word errors, and word boundaries. Based on the observations from the analysis we give several suggestions related to the design and implementation of effective OCR post-processing approaches.
Abstract-The state-of-the-art interactive image segmentation algorithms are sensitive to the user inputs and often unable to produce an accurate boundary with a small amount of user interaction. They frequently rely on laborious user editing to refine the segmentation boundary. In this paper, we propose a robust and accurate interactive method based on the recently developed continuous-domain convex active contour model. The proposed method exhibits many desirable properties of an effective interactive image segmentation algorithm, including robustness to user inputs and different initializations, the ability to produce a smooth and accurate boundary contour, and the ability to handle topology changes. Experimental results on a benchmark data set show that the proposed tool is highly effective and outperforms the state-of-the-art interactive image segmentation algorithms.Index Terms-Interactive image segmentation, convex active contour, digital image editing.
Lifelog can provide useful insights of our daily activities. It is essential to provide a flexible way for users to retrieve certain events or moments of interest, corresponding to a wide variation of query types. This motivates us to develop FIRST, a Flexible Interactive Retrieval SysTem, to help users to combine or integrate various query components in a flexible manner to handle different query scenarios, such as visual clustering data based on color histogram, visual similarity, GPS location, or scene attributes. We also employ personalized concept detection and image captioning to enhance image understanding from visual lifelog data, and develop an autoencoderlike approach for query text and image feature mapping. Furthermore, we refine the user interface of the retrieval system to better assist users in query expansion and verifying sequential events in a flexible temporal resolution to control the navigation speed through sequences of images. CCS CONCEPTS • Information systems → Search interfaces; Multimedia databases; • Human-centered computing → Interactive systems and tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.