The increase in the number of adolescents with internet gaming disorder (IGD), a type of behavioral addiction is becoming an issue of public concern. Teaching adolescents to suppress their craving for gaming in daily life situations is one of the core strategies for treating IGD. Recent studies have demonstrated that computer-aided treatment methods, such as neurofeedback therapy, are effective in relieving the symptoms of a variety of addictions. When a computer-aided treatment strategy is applied to the treatment of IGD, detecting whether an individual is currently experiencing a craving for gaming is important. We aroused a craving for gaming in 57 adolescents with mild to severe IGD using numerous short video clips showing gameplay videos of three addictive games. At the same time, a variety of biosignals were recorded including photoplethysmogram, galvanic skin response, and electrooculogram measurements. After observing the changes in these biosignals during the craving state, we classified each individual participant’s craving/non-craving states using a support vector machine. When video clips edited to arouse a craving for gaming were played, significant decreases in the standard deviation of the heart rate, the number of eye blinks, and saccadic eye movements were observed, along with a significant increase in the mean respiratory rate. Based on these results, we were able to classify whether an individual participant felt a craving for gaming with an average accuracy of 87.04%. This is the first study that has attempted to detect a craving for gaming in an individual with IGD using multimodal biosignal measurements. Moreover, this is the first that showed that an electrooculogram could provide useful biosignal markers for detecting a craving for gaming.
Respiratory rate (RR) is a useful vital sign that can not only provide auxiliary information on physiological changes within the human body, but also indicate early symptoms of various diseases. Recently, methods for the estimation of RR from photoplethysmography (PPG) have attracted increased interest, because PPG can be readily recorded using wearable sensors such as smart watches and smart bands. In the present study, we propose a new method for the fast and robust real-time estimation of RR using an adaptive infinite impulse response (IIR) notch filter, which has not yet been applied to the PPG-based estimation of RR. In our offline simulation study, the performance of the proposed method was compared to that of recently developed RR estimation methods called an adaptive lattice-type RR estimator and a Smart Fusion. The results of the simulation study show that the proposed method could not only estimate RR more quickly and more accurately than the conventional methods, but also is most suitable for online RR monitoring systems, as it does not use any overlapping moving windows that require increased computational costs. In order to demonstrate the practical applicability of the proposed method, an online RR estimation system was implemented.
Although many people suffer from sleep disorders, most are undiagnosed, leading to impairments in health. The existing polysomnography method is not easily accessible; it's costly, burdensome to patients, and requires specialized facilities and personnel. Here, we report an at-home portable system that includes wireless sleep sensors and wearable electronics with embedded machine learning. We also show its application for assessing sleep quality and detecting sleep apnea with multiple patients. Unlike the conventional system using numerous bulky sensors, the soft, all-integrated wearable platform offers natural sleep wherever the user prefers. In a clinical study, the face-mounted patches that detect brain, eye, and muscle signals show comparable performance with polysomnography. When comparing healthy controls to sleep apnea patients, the wearable system can detect obstructive sleep apnea with an accuracy of 88.5%. Furthermore, deep learning offers automated sleep scoring, demonstrating portability, and point-of-care usability. At-home wearable electronics could ensure a promising future supporting portable sleep monitoring and home healthcare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.