Phthalates are plasticizers with widespread industrial, domestic, and medical applications. Epidemiological data indicating increased incidence of testicular dysgenesis in boys exposed to phthalates in utero are reinforced by studies demonstrating that phthalates impair fetal rodent testis development. Because humans are exposed to phthalates continuously from gestation through adulthood, it is imperative to understand what threat phthalates pose at other life stages. To determine the impact during prepuberty, we assessed the consequences of oral administration of 1 to 500 mg di-n-butyl phthalate (DBP)/kg/d in corn oil to wild-type (C57BL/6J) male mice from 4 to 14 days of age. Dose-dependent effects on testis growth correlated with reduced Sertoli cell proliferation. Histological and immunohistochemical analyses identified delayed spermatogenesis and impaired Sertoli cell maturation after exposure to 10 to 500 mg DBP/kg/d. Interference with the hypothalamic-pituitary-gonadal axis was indicated in mice fed 500 mg DBP/kg/d, which had elevated circulating inhibin but no change in serum FSH. Increased immunohistochemical staining for inhibin-α was apparent at doses of 10 to 500 mg DBP/kg/d. Serum testosterone and testicular androgen activity were lower in the 500 mg DBP/kg/d group; however, reduced anogenital distance in all DBP-treated mice suggested impaired androgen action at earlier time points. Long-term effects were evident, with smaller anogenital distance and indications of disrupted spermatogenesis in adult mice exposed prepubertally to doses from 1 mg DBP/kg/d. These data demonstrate the acute sensitivity of the prepubertal mouse testis to DBP at doses 50- to 500-fold lower than those used in rat and identify the upregulation of inhibin as a potential mechanism of DBP action.
Activin production and signaling must be strictly regulated for normal testis development and function. Inhibins are potent activin inhibitors; mice lacking the inhibin-α gene (Inha-/- mice) cannot make inhibin and consequently have highly elevated activin and FSH serum concentrations and excessive activin signaling, resulting in somatic gonadal tumors and infertility. Dose-dependent effects of activin in testicular biology have been widely reported; hence, we hypothesized that male mice lacking one copy of the Inha gene would produce less inhibin and have an abnormal reproductive phenotype. To test this, we compared hormone concentrations, testis development, and sperm production in Inha+/+ and Inha+/- mice. Serum and testicular inhibin-α concentrations in adult Inha+/- mice were approximately 33% lower than wild type, whereas activin A, activin B, FSH, LH, and T were normal. Sixteen-day-old Inha+/- mice had a mixed phenotype, with tubules containing extensive germ cell depletion juxtaposed to tubules with advanced Sertoli and germ cell development. This abnormal phenotype resolved by day 28. By 8 weeks, Inha+/- testes were 11% larger than wild type and supported 44% greater daily sperm production. By 26 weeks of age, Inha+/- testes had distinct abnormalities. Although still fertile, Inha+/- mice had a 27% reduction in spermatogenic efficiency, a greater proportion of S-phase Sertoli cells and lower Leydig cell CYP11A1 expression. This study is the first to identify an intratesticular role for inhibin/inhibin-α subunit, demonstrating that a threshold level of this protein is required for normal testis development and to sustain adult somatic testicular cell function.
Phthalate exposure impairs testis development and function; however, whether phthalates affect nonreproductive functions is not well understood. To investigate this, C57BL/6J mice were fed 1-500 mg di-n-butyl phthalate (DBP) in corn oil, or vehicle only, daily from 4 to 14 days, after which tissues were collected (prepubertal study). Another group was fed 1-500 mg/kg·d DBP from 4 to 21 days and then maintained untreated until 8 weeks for determination of adult consequences of prepubertal exposure. Bones were assessed by microcomputed tomography and dual-energy X-ray absorptiometry and T by RIA. DBP exposure decreased prepubertal femur length, marrow volume, and mean moment of inertia. Adult animals exposed prepubertally to low DBP doses had lower bone mineral content and bone mineral density and less lean tissue mass than vehicle-treated animals. Altered dynamics of the emerging Leydig population were found in 14-day-old animals fed 100-500 mg/kg·d DBP. Adult mice had variable testicular T and serum T and LH concentrations after prepubertal exposure and a dose-dependent reduction in cytochrome p450, family 11, subfamily A, polypeptide 1. Insulin-like 3 was detected in Sertoli cells of adult mice administered the highest dose of 500 mg/kg·d DBP prepubertally, a finding supported by the induction of insulin-like 3 expression in TM4 cells exposed to 50 μM, but not 5 μM, DBP. We propose that low-dose DBP exposure is detrimental to bone but that normal bone mineral density/bone mineral content after high-dose DBP exposure reflects changes in testicular somatic cells that confer protection to bones. These findings will fuel concerns that low-dose DBP exposure impacts health beyond the reproductive axis.
Mucosal trypsin, a protease-activated receptor (PAR) stimulant, may have an endogenous bronchoprotective role on airway smooth muscle. To test this possibility the effects of lumenal trypsin on airway tone in segments of pig bronchus were tested.Bronchial segments from pigs were mounted in an organ chamber containing Kreb's solution. Contractions were assessed from isovolumetric lumen pressure induced by acetylcholine (ACh) or carbachol added to the adventitia.Trypsin, added to the airway lumen (300 mg?mL), had no immediate effect on smooth muscle tone but suppressed ACh-induced contractions after 60 min, for at least 3 h. Synthetic activating peptides (AP) for PAR 1 , PAR 2 or PAR 3 were without effect, but PAR 4 AP caused rapid, weak suppression of contractions. Lumenal thrombin was without effect and did not prevent the effects of trypsin. Effects of trypsin were reduced by N w -nitro-L-arginine methyl ester but not indomethacin. Trypsin, thrombin and PAR 4 AP released prostaglandin E2. Adventitially, trypsin, thrombin and PAR 4 AP (but not PAR 2 AP) relaxed carbachol-toned airways after ,3 min.The findings of this study show that trypsin causes delayed and persistent bronchoprotection by interacting with airway cells accessible from the lumen. The signalling mechanism may involve nitric oxide synthase but not prostanoids or protease-activated receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.