Abstract-A multi-interface ZigBee building area network (MIZBAN) for a high-traffic advanced metering infrastructure (AMI) for high-rise buildings was developed. This supports meter management functions such as Demand Response for smart grid applications. To cater for the high-traffic communication in these building area networks (BANs), a multi-interface management framework was defined and designed to coordinate the operation between multiple interfaces based on a newly defined tree-based mesh (T-Mesh) ZigBee topology, which supports both mesh and tree routing in a single network. To evaluate MIZBAN, an experiment was set up in a five-floor building. Based on the measured data, simulations were performed to extend the analysis to a 23-floor building. These revealed that MIZBAN yields an improvement in application-layer latency of the backbone and the floor network by 75% and 67%, respectively. This paper provides the design engineer with seven recommendations for a generic MIZBAN design, which will fulfill the requirement for demand response by the U.S. government, i.e. a latency of less than 0.25 s.Index Terms-Advanced Metering Infrastructure (AMI), building area network (BAN), multi-interface, smart grid, ZigBee.
A WiFi-ZigBee hybrid BAN solution, namely WiZBAN, is proposed and implemented to cater for the development of high traffic AMI for smart grid application. It is important to highlight that the major challenge of WiZBAN is to handle the high density environment which results in heavy traffic loading and weak signal propagation. To overcome the captioned problem, Vertical Backbone Communication (VBC) and Horizontal Floor Communication (HFC) are defined for WiZBAN. The WiZBAN consists of WiZBAN Gateway (WiZGW), WiZBAN Meter Hub (WiZBAN) and WiZBAN In Home Display (WiZIHD) which caters for the smart grids services including smart metering and demand response. The WiZGW is the entrance of WiZBAN and connects WiZBAN to utilities. The WiZGW also teams up with WiZMH to enables VBC. On the other hand, WiZMH serves as the interception point of VBC and HFC. It interacts with smart meters and sets up the HFC together with WiZIHD to provide the user interface for end users. To shorten the transmission time, WiFi is adopted for VBC while ZigBee is applied to HCF to overcome the weak signal propagation. To investigate the performance of WiZBAN, a case study has been conducted based on an existing 23 floor residential building. From the measured and simulated results, the average round trip delay of demand response and smart metering are found to be 0.6 s and 9 s respectively
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.