Abstract:As an improved algorithm of standard extreme learning machine, online sequential extreme learning machine achieves excellent classification and regression performance. However, online sequential extreme learning machine gives the same weight to the old and new training samples, and fails to highlight the importance of the new training samples. At the same time, the algorithm updates the network weights after obtaining the new training samples. This network weight updating mode lacks flexibility and increases unnecessary computation. This paper proposes an adaptive online sequential extreme learning machine with an effective sample updating mechanism. The new and old samples are given different weights. The effect of new training samples on the algorithm is further enhanced, which can further improve the regression prediction ability of extreme learning machine. At the same time, an improved artificial bee colony algorithm is proposed and used to optimize the parameters of the adaptive online sequential extreme learning machine. The stability and convergence property of proposed prediction method are proved. The actual collected short-term wind speed time series is used as the research object and verify the prediction perfromance of the proposed method. Multi step prediction simulation of short-term wind speed is performed out. Compared with other prediction methods, the simulation results show that the proposed approach has higher prediction accuracy and reliability performance, meanwhile improve the performance indicators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.