Background As an opportunistic pathogen, Escherichia coli ( E. coli ) is widely recognized as the main cause of nosocomial infections as well as some disorders especially those associated with urinary tract infections (UTIs). This study, therefore, sets out to determine the extent of antibiotic resistance to quinolones and to measure the frequency of qnr genes (A, B, and S) within extended-spectrum beta-lactamase (ESBL) and non-ESBL-producing strains of E. coli isolated from UTI-diagnosed patients as well as to investigate their antimicrobial susceptibility patterns for some selected antibiotics in southwest Iran. Methods Two hundred E. coli strains were isolated from UTI-diagnosed patients, hospitalized in nine different wards of Ahvaz Golestan Hospital between November 2015 and March 2016. The isolates were confirmed through well-practiced phenotypical methods. Moreover, the antimicrobial susceptibility test was successfully performed using a disk diffusion method. ESBL production among the isolates was screened by double disk synergism test (DDST), and the qnr genes were identified using a multiplex PCR. Results Out of the 200 samples collected, 167 isolates were confirmed to be E. coli strains. Maximum and minimum resistance were reported against nalidixic acid and chloramphenicol with 65.3% and 17.4%, respectively. Most of the isolates were resistant to all three types of quinolones studied in this research. Using multiplex PCR, the qnr genes were found in 100 (59.88%) strains ( qnr A = 10, qnr B = 21, qnr S = 41, qnr B-S = 21, qnr B-A = 1, qnr A-S = 3, qnr A-B-S = 3), 58% of which was found among ESBL-producing isolates. Conclusions Resistance to quinolones antibiotics was highest among ESBL-producing isolates harboring, especially qnr S among other determinants of the qnr gene. There is a need for sensitive antibiotic stewardship especially in hospitals of Ahvaz, Khuzestan province. Further research is needed to ascertain the gravity of quinolones resistance in Iran and to quickly act against its spread among other nosocomial pathogens.
IntroductionEnteroaggregative Escherichia coli (EAEC) has been implicated as an emerging cause of traveler’s diarrhea, persistent diarrhea among children, and immunocompromised patients. The present study aimed to investigate the prevalence of antibiotic resistance, extendedspectrum β-lactamase (ESBL) production, and virulence factors of EAEC isolates obtained from Iranian children suffered from diarrhea.Materials and methodsIn this cross-sectional study, from March 2015 to February 2016, 32 EAEC isolates were collected from fecal samples of children aged <12 years with diarrhea in southwest of Iran. All EAEC isolates identified using phenotypic and molecular methods and the cell line adhesion assay. Antimicrobial susceptibility testing was determined using disk diffusion method. The presence of virulence factors and ESBL resistance genes were determined by polymerase chain reaction.ResultsOverall, 28.1% (9/32) of the isolates were positive for at least one of virulence genes. The most frequent gene was aap with a frequency of 96.9%. Neither aafA nor aggA gene was detected among all of the EAEC isolates. Antimicrobial susceptibility testing revealed the highest resistance rate to ampicillin (100%) and co-trimoxazole (100%), followed by ceftriaxone (81.3%). Further analysis revealed that the rate of ESBLs-producing isolates was 71.9% (23/32). Polymerase chain reaction screening revealed that 87.5% and 65.5% of EAEC isolates were positive for blaTEM and blaCTX-M genes, respectively, and 17 (53.1%) of isolates contained both blaTEM and blaCTX-M genes.ConclusionThe high detection rate of ESBL-producing EAEC isolates accompanied with virulence genes highlights a need to restrict infection control policies in order to prevent further dissemination of the resistant and virulent EAEC strains.
This study aimed to assess the presence of qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and aac(6′)-Ib-cr determinants as well as quinolone resistance pattern of clinical isolates of P. aeruginosa in Ahvaz, southwest Iran. A total of 185 clinical isolates of P. aeruginosa were collected from 5 university-affiliated hospitals in Ahvaz, southwest Iran. The disk diffusion method was applied to assess the quinolone resistance pattern. The presence of qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and aac(6′)-Ib-cr genes was investigated by the polymerase chain reaction (PCR) method. Overall, 120 (64.9%) isolates were non-susceptible to quinolones. The most and the less quinolone resistance rates were observed against ciprofloxacin (59.4%) and ofloxacin (45.9%), respectively. The prevalence rates of qnr genes were as follows: qnrA (25.8%), qnrB (29.2%), and qnrS (20.8%). The qnrB gene was the most common type of qnr genes. The qnr genes were occurred in 37.5% (n = 45/120) of quinolne-resistant isolates, simultaneously. The qnrC, qnrD, qepA, and aac(6′)-Ib-cr genes were not recognized in any isolates. In conclusion, the ofloxacin was the most effective quinolone. This study was the first to shed light on the prevalence of PMQR genes among P. aeruginosa isolates in southwest Iran.
Objective Moraxella catarrhalis is a non-motile Gram-negative diplococcus bacterium that contributed to several human infections including conjunctivitis. This study aimed to reveal the prevalence of M. catarrhalis in patients who suffered from conjunctivitis in Ahvaz city, southwest of Iran. Results Out of 100 conjunctiva swab specimens, M. catarrhalis was isolated only from one (1%) conjunctivitis cases using the culture method. This strain was isolated from a 34 years old female patient. Also, the results of the polymerase chain reaction (PCR) were in agreement with the culture method, and the specimen that showed positive culture was also positive for specific gene of M. catarrhalis. The remaining 99 specimens did not show positive results with any of the culture and PCR methods.
Objective To investigate correlations between ABO/rhesus (Rh) blood group antigens and anti- Helicobacter pylori and anti-cytotoxin-associated gene A (CagA) seropositivity in blood donors. Methods A total of 311 blood donors were enrolled. ABO and Rh blood groups were determined using hemagglutination tests. Specific anti- H. pylori IgG and anti-CagA IgG antibodies in sera were quantitated by enzyme-linked immunosorbent assay. Correlations between blood groups and anti- H. pylori and anti-CagA seropositivity were evaluated using the Chi-square test. Results O+ was the most frequent blood type (38%, n = 118). Anti- H. pylori IgG seropositivity was observed in 240 (77.2%) blood donors, while anti-CagA IgG seropositivity was observed in 132 (42.5%) blood donors. Although seropositivity rates for both anti- H. pylori and anti-CagA IgG were higher in individuals with blood type O, no statistically significant associations were observed between seropositivity and any ABO/Rh blood groups. Conclusion Individuals with blood type O may have higher rates of H. pylori seropositivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.