Evaluating the effect of convalescent plasma (CP) on some cytokine storm indices in severe COVID-19 patients. Totally, 62 patients were randomly assigned into two groups for this clinical trial. Patients in the intervention group received one unit (500 mL) plasma on the admission day plus standard drugs while the controls merely received standard treatments. Eventually, primary and secondary outcomes were evaluated. In the CP group, compared with controls, the mean levels of lymphocytes and IL-10 significantly increased while the levels of IL-6, TNF-α, and IFN-γ decreased (
p
< 0.05). The length of in-hospital stay, and mortality rate did not significantly reduce in the CP group compared with controls (
p
> 0.05) while WHO severity scores remarkably improved (
p
= 0.01), despite the higher frequency of underlying diseases among the CP group (66.7%) vs. controls (33.3%). Although CP has a remarkable immunomodulatory and antiviral potential to improve the cytokine storm and disease severity in COVID-19 patients, it did not considerably affect the mortality rate.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11739-021-02734-8.
The present report describes three new exonic LHX4 allelic variants with at least one being responsible for congenital hypopituitarism. It also extends the phenotypical heterogeneity associated with LHX4 mutations, which includes variable anterior pituitary hormone deficits, as well as pituitary and extrapituitary abnormalities.
Background:
Sub-minimal inhibitory concentrations of antibiotics have been indicated to affect the biofilm formation in pathogens of nosocomial infections. This study aimed to investigate the effects of meropenem and tigecycline at their sub-minimum inhibitory concentrations (MICs) on the biofilm formation capacity of
Acinetobacter baumannii
(
A. baumannii)
, as well as the expression levels of genes involved in biofilm formation, quorum sensing, pili assembly and efflux pumps.
Materials and methods:
In this study, four non-clonal strains (AB10, AB13, AB32 and AB55), which were different from the aspects of antibiotic susceptibility and biofilm formation from each other were selected for the evaluation of antimicrobial susceptibility, biofilm inducibility at sub-MICs of meropenem and tigecycline and the gene expression levels (the
abaI, abaR, bap, pgaA, csuE, bfmS, bfmR, ompA, adeB, adeJ and adeG
genes).
Result:
A significant increase in the MICs of all antibiotics was demonstrated in the biofilm cells in each four strains. The biofilm formation was significantly decreased in all the representative strains exposed to tigecycline. However, the biofilm inducibility at sub-MICs of meropenem was dependent on strain genotype. In concordance with these results, Pearson correlation analysis indicated a positive significant correlation between the biofilm formation capacity and the mRNA levels of genes encoding efflux pumps except
adeJ
, the genes involved in biofilm formation, pili assembly and quorum sensing following exposure to meropenem and tigecycline at their sub-MICs.
Conclusion:
These results revealed valuable data into the correlation between the gene transcription levels and biofilm formation, as well as quorum sensing and their regulation at sub-MICs of meropenem and tigecycline.
BackgroundThe ability of biofilm formation is an effective way for Acinetobacter baumannii survival from stressed conditions. This present study was aimed to evaluate the association between biofilm formation, structure, the expression levels of genes related to biofilm formation and biofilm-specific resistance of A. baumannii strains isolated from burn infections in Ahvaz, Iran.MethodsIn this study, we assessed the antibiotic susceptibilities, ERIC-PCR typing, capacity of biofilm formation and biofilm structure of 64 A. baumannii isolates collected from burn infections. The distribution and the expression levels of genes involved in the biofilm formation including bap, ompA, abaI, pgaA and csuE were assessed by PCR and real-time PCR, respectively.ResultsWe classified A. baumannii isolates in 14 clonal types of ERIC-PCR. Most A. baumannii isolates were resistant to all antibiotics tested except to tigecycline and colistin and had the biofilm formation capability but with different capacities. There was a significant inverse relationship between resistance to antibiotic agents and biofilm formation. The biofilm matrix of 50 strains consisted of polysaccharides together with DNA or proteins. The genes involved in the biofilm formation were detected in both biofilm-forming and non-biofilm forming; however, the expression levels of these genes were higher in biofilm producers compared with non-producers.ConclusionThe biofilm cells exhibited dramatically decreased susceptibility to antibiotic agents; hence, they have great significance for public health. Therefore, the determination of antibiotic susceptibilities in biofilm and planktonic mode, molecular typing, and capacity of biofilm formation in clinical setting is essential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.