Monitoring of longitudinal land subsidence and deformation in seismic and geological hazards plays an important role in preventing and curing land collapse, land subsidence, and ground cracks. In this paper, a distributed monitoring model experiment on vertical land subsidence and deformation of seismic and geological hazards is carried out by Brillouin optical frequency-domain analysis technology (BOTDA). By using the self-made indoor longitudinal land subsidence and deformation simulation box, different intensity seismic ground is simulated by air bag. Distributed optical fibers are used to monitor the longitudinal land subsidence and deformation during different intensity seismic and geological disasters. According to different intensity seismic and geological disasters, distributed sensing optical fibers cooperate with the ground to compress or stretch longitudinally and obtain the data of longitudinal land subsidence and deformation. The correction coefficient is introduced to modify the monitoring data of confining pressure-sensing optical fiber and complete the precise monitoring of vertical land subsidence and deformation in seismic and geological hazards. The experimental results show that this method can monitor the vertical ground subsidence and deformation of seismic and geological hazards under different conditions, and the monitoring efficiency and cost are superior to GPS and inertial monitoring methods, and the practical application value is high.
Based on the local T-S model, the switching control method for the nonlinear response of the seismic surface is studied, and the stiffness matrix of the composite interlayer element of viscoelastic damper and herringbone support is derived. The high-order single step ß method is applied to the nonlinear seismic response analysis and the instantaneous optimal active switching control. The local T-S model and controller are designed, and the approach and control of global nonlinear responses are realized through the multi-model switching control. The results show that the proposed method can accurately reflect the reduction of seismic ground load and the switching control of the main structure when the viscoelastic damper is installed. The switching control effect of the maximum spatial displacement becomes more and more obvious with the change of time history, and the control effect of all layers applying the switching control force is the most significant. Whether the controller is disturbed or not, it is always good and stable performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.