Microsphere-assisted microscopy has received a lot of attention recently due to its simplicity and its capability to surpass the diffraction limit. However, to date, sub-diffraction-limit features have only been observed in virtual images formed through the microspheres. We show that it is possible to form real, super-resolution images using high-refractive index microspheres. Also, we report on how changes to a microsphere’s refractive index and size affect image formation and planes. The relationship between the focus position and the additional magnification factor is also investigated using experimental and theoretical methods. We demonstrate that such a real imaging mode, combined with the use of larger microspheres, can enlarge sub-diffraction-limit features up to 10 times that of wide-field microscopy’s magnification with a field-of-view diameter of up to 9 μm.
The density of a single cell is a fundamental property of cells. Cells in the same cycle phase have similar volume, but the differences in their mass and density could elucidate each cell's physiological state. Here we report a novel technique to rapidly measure the density and mass of a single cell using an optically induced electrokinetics (OEK) microfluidic platform. Presently, single cellular mass and density measurement devices require a complicated fabrication process and their output is not scalable, i.e., it is extremely difficult to measure the mass and density of a large quantity of cells rapidly. The technique reported here operates on a principle combining sedimentation theory, computer vision, and microparticle manipulation techniques in an OEK microfluidic platform. We will show in this paper that this technique enables the measurement of single-cell volume, density, and mass rapidly and accurately in a repeatable manner. The technique is also scalable - it allows simultaneous measurement of volume, density, and mass of multiple cells. Essentially, a simple time-controlled projected light pattern is used to illuminate the selected area on the OEK microfluidic chip that contains cells to lift the cells to a particular height above the chip's surface. Then, the cells are allowed to "free fall" to the chip's surface, with competing buoyancy, gravitational, and fluidic drag forces acting on the cells. By using a computer vision algorithm to accurately track the motion of the cells and then relate the cells' motion trajectory to sedimentation theory, the volume, mass, and density of each cell can be rapidly determined. A theoretical model of micro-sized spheres settling towards an infinite plane in a microfluidic environment is first derived and validated experimentally using standard micropolystyrene beads to demonstrate the viability and accuracy of this new technique. Next, we show that the yeast cell volume, mass, and density could be rapidly determined using this technology, with results comparable to those using the existing method suspended microchannel resonator.
We present a method capable of rapidly ($20 s) determining the density and mass of a single leukemic cell using an optically induced electrokinetics (OEK) platform. Our team had reported recently on a technique that combines sedimentation theory, computer vision, and micro particle manipulation techniques on an OEK microfluidic platform to determine the mass and density of micron-scale entities in a fluidic medium; the mass and density of yeast cells were accurately determined in that prior work. In the work reported in this paper, we further refined the technique by performing significantly more experiments to determine a universal correction factor to Stokes' equation in expressing the drag force on a microparticle as it falls towards an infinite plane. Specifically, a theoretical model for micron-sized spheres settling towards an infinite plane in a microfluidic environment is presented, and which was validated experimentally using five different sizes of micro polystyrene beads. The same sedimentation process was applied to two kinds of leukemic cancer cells with similar sizes in an OEK platform, and their density and mass were determined accordingly. Our tests on mouse lymphocytic leukemia cells (L1210) and human leukemic cells (HL-60) have verified the practical viability of this method. Potentially, this new method provides a new way of measuring the volume, density, and mass of a single cell in an accurate, selective, and repeatable manner. V C 2015 AIP Publishing LLC. [http://dx
Artificial reconstruction of three-dimensional (3D) hydrogel microstructures would greatly contribute to tissue assembly in vitro, and has been widely applied in tissue engineering and drug screening. Recent technological advances in the assembly of functional hydrogel microstructures such as microfluidic, 3D bioprinting, and micromold-based 3D hydrogel fabrication methods have enabled the formation of 3D tissue constructs. However, they still lack flexibility and high efficiency, which restrict their application in 3D tissue constructs. Alternatively, we report a feasible method for the fabrication and reconstruction of customized 3D hydrogel blocks. Arbitrary hydrogel microstructures were fabricated in situ via flexible and rapid light-addressable electrodeposition. To demonstrate the versatility of this method, the higher-order assembly of 3D hydrogel blocks was investigated using a constant direct current (DC) voltage (6 V) applied between two electrodes for 20–120 s. In addition to the plane-based two-dimensional (2D) assembly, hierarchical structures—including multi-layer 3D hydrogel structures and vessel-shaped structures—could be assembled using the proposed method. Overall, we developed a platform that enables researchers to construct complex 3D hydrogel microstructures efficiently and simply, which has the potential to facilitate research on drug screening and 3D tissue constructs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.