Migratory animals are predicted to enhance lifetime fitness by obtaining higher quality forage and/or reducing predation risk compared to non-migratory conspecifics. Despite evidence for behavioural flexibility in other taxa, previous research on large mammals has often assumed that migratory behaviour is a fixed behavioural trait. Migratory behaviour may be plastic for many species, although few studies have tested for individual-level flexibility using long-term monitoring of marked individuals, especially in large mammals such as ungulates. We tested variability in individual migratory behaviour using a 10-year telemetry data set of 223 adult female elk (Cervus elaphus) in the partially migratory Ya Ha Tinda population in Alberta, Canada. We used net squared displacement (NSD) to classify migratory strategy for each individual elk-year. Individuals switched between migrant and resident strategies at a mean rate of 15% per year, and migrants were more likely to switch than residents. We then tested how extrinsic (climate, elk/wolf abundance) and intrinsic (age) factors affected the probability of migrating, and, secondly, the decision to switch between migratory strategies. Over 630 individual elk-years, the probability of an individual elk migrating increased following a severe winter, in years of higher wolf abundance, and with increasing age. At an individual elk level, we observed 148 switching events of 430 possible transitions in elk monitored at least 2 years. We found switching was density-dependent, where migrants switched to a resident strategy at low elk abundance, but residents switched more to a migrant strategy at high elk abundance. Precipitation during the previous summer had a weak carryover effect, with migrants switching slightly more following wetter summers, whereas residents showed the opposite pattern. Older migrant elk rarely switched, whereas resident elk switched more frequently to migrate at older ages. Our results show migratory behaviour in ungulates is an individually variable trait that can respond to intrinsic, environmental and density-dependent forces. Different strategies had opposing responses to density-dependent and intrinsic drivers, providing a stabilizing mechanism for the maintenance of partial migration and demographic fitness in this population.
Migration is expected to benefit individuals through exposure to higher quality forage and reducing predation rates more than non‐migratory conspecifics. Previous studies of partially migratory ungulates (with migrant and resident individuals) have focused on bottom–up factors regulating resident and migrant segments, yet differential predation between strategies could also be a density‐dependent regulatory mechanism. Our study tested for density‐dependence in mortality, as well as mechanisms of bottom–up or top–down regulation in the resident and migrant portions of the partially migratory Ya Ha Tinda elk population. We tested for density dependence in adult female and juvenile survival rates, and then discriminated between predator‐ and food‐regulation hypotheses by testing for density‐dependence amongst mortality causes for adult female elk. Notably, the population declined almost 70% from near previously published estimates of carrying capacity over 10 years, providing ideal conditions to test for density dependence. In contrast to predictions, we found only weak support for density dependence in adult survival and juvenile survival. We also found few differences between migrant and resident elk in adult or juvenile survival, though juvenile survival differences were biologically significant. Predation by humans and grizzly bears was density dependent, but similar between migratory strategies. Predation by wolves was the leading known cause of mortality, yet remained constant with declining elk density equally for both migrant and resident elk, indicating wolf predation was density‐independent. Instead of being strongly regulated by food or predation, we found adult female survival was driven by density‐independent predation and climatic factors. The few differences between migratory strategies suggest equivalent fitness payoffs for migrants and residents. This population is being limited by density‐independent predation leading to declines of both migratory strategies. Our results challenge classical predator–prey theory, and call for better integration between predator–prey and migration theory.
Loss of migratory behavior or shifts in migratory ranges are growing concerns to wildlife managers. How ungulates prioritize safety from predators at the expense of high‐quality foraging opportunities during calving may be key to understanding these shifts and long‐term reproductive success. We compared trade‐offs in selection for forage and predation risk by elk (Cervus canadensis) following 3 migratory tactics (western and eastern migration and resident) during 2 time periods in a declining (by almost 70% from 2002–2016), partially migratory elk population adjacent to Banff National Park in Alberta, Canada. We hypothesized that regardless of migratory tactic, maternal elk would show stronger trade‐offs between high‐quality foraging associated with higher predation risk and forage resources of lower‐quality yet lower risk on calving ranges than on ranges used during summer because of vulnerability of their offspring. Additionally, we hypothesized these trade‐offs would occur at high (2002–2006) and low (2013–2016) elk population sizes. We used a machine‐learning algorithm to predict dates of parturition based on global positioning system (GPS) movements of elk equipped with vaginal implants (n = 60) and predictions were within 1.43 ± 0.85 (SE) days of the known date. We applied the model to an additional 58 GPS‐collared elk without vaginal implants. Based on changes in localized movements, we defined calving areas as the 26 days post‐parturition and compared habitat characteristics of calving areas to 10 similar‐sized areas centered on random locations during summer for the same individual in a latent selection framework. Across the 2 time periods, parturition occurred from 8 May–11 July with median parturition dates differing among migratory tactics and residents shifting towards an earlier parturition date in the later period. All elk, regardless of migratory tactic and time period, selected calving areas with greater forage resources than were available on areas used during summer, with no evidence for greater selection of areas that reduced predation risk at the expense of higher‐quality foraging. Calving season selection for areas with abundant forage exposed western migrants to high risk of bear (Ursus spp.) predation, residents to high risk of wolf (Canis lupus) predation, and eastern migrants to low risk of bear and wolf predation. Patterns in exposure to predation risk during calving between migratory tactics were consistent with the recent decline in western migrants and increase in eastern migrants, implying that conditions on calving areas contributed to observed changes in the number of elk following these tactics. © 2021 The Wildlife Society.
Many large herbivore populations are partially migratory, in which the population is comprised of both non-migratory (resident) and migratory individuals. Densitydependence contributes to regulating the dynamics of partially migratory populations by altering habitat selection, vital rates, or rates of behavioral switching between migratory tactics. Studies of mechanisms leading to these shifts have focused mainly on their behavior on summer range, overlooking the potential for density-dependent effects during winter that may influence decisions to migrate. We hypothesized that competition for food and safety from wolf predation risk on winter ranges would differentially affect habitat selection, movements, and grouping behavior of migrant and resident female North American elk (Cervus canadensis) on their sympatric winter range. We used GPS locations from 92 adult female elk in 155 elk-winters at Ya Ha Tinda, Alberta, Canada, over a 14-year period when the elk population declined by ∼70% to test our hypotheses. Elk showed consistently strong selection for areas of high forage biomass that corresponded to longer residence times and shorter return times to areas of high forage biomass. The strength of the selection diminished at high elk population size as did the extent to which elk traded off forage for safety from wolf predation risk. Elk increased movement rates and extended return times only to the riskiest areas. Median group size and mean sociality among elk increased at low population size, with resident elk groups being larger and more cohesive than migrant groups. Similar density-dependent responses by migrant and resident female elk on sympatric winter range indicate resident elk do not alter foraging behaviors to compensate for exposure to low nutritional resources in summer, implicating seasonal differences in nutrition are not mediated by winter densities in this system. We discuss the implications of competition on winter ranges for the maintenance of partial migration in ungulates in montane systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.