For mixed-layer clay fractions from the North Sea and Denmark, X-ray diffractograms have been recorded for specimens saturated with Mg, Ca, Na and NH4, both airdry and intercalated with ethylene glycol, and the patterns have been computer-simulated with a multicomponent program. The mixed-layer fractions consist of an illite-smectite-vermiculite (I-S-V) phase constituting -90% of the fraction and a kaolinite-illite-vermiculite (K-I-V) phase. For each I-S-V, the degree of swelling in swelling interlayers depends on both interlayer cation and glycolation, whereas the amount of non-swelling illite and swelling interlayers and the interstratification parameters are constant. Based on structural characteristics and the degree of diagenetic transformation, the samples investigated can be divided into three groups. The I-S-V of group one is predominantly detrital and has 0.69-0.73 illite, 0.26-0.20 smectite and 0.04-0.07 vermiculite interlayers, the illite, smectite and vermiculite interlayers being segregated. The I-S-V of group two has been diagenetically transformed and has 0.80 illite, 0.12 smectite and 0.08 vermiculite interlayers, the vermiculite interlayers being segregated whereas the illite and smectite have the maximum ordering possible for R = 1. The I-S-V of group three has been further transformed during diagenesis and has 0.84 illite, 0.08 smectite and 0.08 vermiculite interlayers. Statistical calculations demonstrate that the I-S-V transformation can be described as a single interlayer transformation (SIT) within the crystallites.
Interstratified illite-smectites (I/S) and illite-smectite-vermiculites (ISV) representing both hydrothermal and diagenetic transformations and having different degrees of structural order were investigated for cis-trans occupancy in the octahedral sheet by X-ray diffraction (XRD) and by differential thermal analysis (DTA) in combination with evolved water analysis (EWA) using an infrared detector. By XRD, the amounts of cis (w cv) and trans (w tv) vacant 2:1 layers were determined for the three-dimensionally ordered samples using both the WILDFIRE simulation program and calculations based on positions of the 11l and 11 reflections. Based on the EWA curves, the I/S and ISV could be divided into threē l groups having (1) one strong and one or more weak EWA peaks; (2) two well-resolved peaks; and (3) a complex EWA curve. The amounts of cis-and trans-vacant sites were determined by peak fitting of the total dehydroxylation curve. The complex EWA curves were, however, in addition split into separate dehydroxylation processes during a stepheating technique. If the EWA peaks below and above 600 ЊC were attributed to trans vacant (tv) and cis vacant (cv) octahedra, respectively, the w cv values determined by XRD and by EWA were in agreement. For the three-dimensionally ordered minerals, both XRD and EWA should be used, whereas the EWA method can be applied to the structurally disordered samples having no diagnostic 11l reflections. Accordingly, a combination of XRD and EWA for the determination of w cv and w tv supports an evaluation of the mechanism of illitization in various geological environments. Thus, significant changes in w cv and w tv during illitization are likely due to a dissolution-precipation, whereas almost constant values indicate a solid-state transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.