The symbiotic relationships between mycorrhizal fungi and plants have an enormous impact on terrestrial ecosystems. Most common are the arbuscular mycorrhizas, formed by fungi belonging to the phylum Glomeromycota. Arbuscular mycorrhizal fungi facilitate the uptake of soil nutrients by plants and in exchange obtain carbohydrates, thus representing a large sink for atmospheric plant-fixed CO(2). However, how carbohydrates are transported through the symbiotic interface is still unknown. Here we report the characterization of the first known glomeromycotan monosaccharide transporter, GpMST1, by exploiting the unique symbiosis of a glomeromycotan fungus (Geosiphon pyriformis) with cyanobacteria. The GpMST1 gene has a very low GC content and contains six introns with unusual boundaries. GpMST1 possesses twelve predicted transmembrane domains and functions as a proton co-transporter with highest affinity for glucose, then mannose, galactose and fructose. It belongs to an as yet uncharacterized phylogenetic monosaccharide transporter clade. This initial characterization of a new transporter family involved in fungal symbiosis will lead to a better understanding of carbon flows in terrestrial environments.
SUMMARY The obligately biotrophic rust fungi are dependent on nutrient supply from their host plants. A cDNA library of infection structures of the rust fungus Uromyces fabae was used to identify a gene (UfAAT3) that encodes a protein with a high degree of sequence similarity to fungal amino acid permeases. The expression profile revealed by RT-PCR shows an up-regulation very early during rust development, with the highest level in haustoria and infected leaves. Heterologous expression of UfAAT3p in Xenopus oocytes revealed an amino acid permease energized by co-transport with protons and exhibiting a broad substrate specificity. Compared to the previously described U. fabae amino acid transporter (AAT1), which represented the highest transport activities for lysine and histidine, electrophysiological measurements with cRNA of UfAAT3-injected oocytes showed substrate preferences for leucine and the sulphur containing amino acids methionine and cysteine. The unique contribution of the amino acid permeases and their substrate affinities might be connected with the availability of amino acids in the leaf tissue. Thus, in order to compare the substrate profiles of AAT1p and UfAAT3p with the natural environment of U. fabae we analysed the amino acid concentration in the apoplastic space, in addition to that in extracts of Vicia faba leaves. The predominant free amino acids were asparagine, alanine, glutamine and glutamate. However, most amino acids were present at low concentrations (between 0.02 and 0.16 mm), including the preferred substrates of the U. fabae amino acid permeases AAT1p and UfAAT3p.
The intimate arbuscular mycorrhiza (AM) association between roots and obligate symbiotic Glomeromycota ('AM fungi') 'feeds' about 80% of land plants. AM forming fungi supply land plants with inorganic nutrients and have an enormous impact on terrestrial ecosystems. In return, AM fungi obtain up to 20% of the plant-fixed CO(2), putatively as monosaccharides. In a recent work we have reported the characterization of the first glomeromycotan monosaccharide transporter, GpMST1, and its gene sequence. We discuss that AM fungi might take up sugars deriving from plant cell-wall material. The GpMST1 sequence delivers valuable data for the isolation of orthologues from other AM fungi and may eventually lead to the understanding of C-flows in the AM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.