We study Fiske steps in small Bi 2 Sr 2 CaCu 2 O 8+x mesa structures, containing only few stacked intrinsic Josephson junctions. Careful alignment of magnetic field prevents penetration of Abrikosov vortices and facilitates observation of a large variety of high quality geometrical resonances, including superluminal with velocities larger than the slowest velocity of electromagnetic waves. A small number of junctions limits the number of resonant modes and allows accurate identification of modes and velocities. It is shown that superluminal geometrical resonances can be excited by subluminal fluxon motion and that flux-flow itself becomes superluminal at high magnetic fields. We argue that observation of high-quality superluminal geometrical resonances is crucial for realization of the coherent flux-flow oscillator in the THz frequency range.
We perform a detailed comparison of magnetotunneling in conventional low-T c Nb/Al-AlO x /Nb junctions with that in slightly overdoped Bi 2−y Pb y Sr 2 CaCu 2 O 8+δ [Bi(Pb)-2212] intrinsic Josephson junctions and with microscopic calculations. It is found that both types of junctions behave in a qualitatively similar way. Both magnetic field and temperature suppress superconductivity in the state-conserving manner. This leads to the characteristic sign change of tunneling magnetoresistance from the negative at the subgap to the positive at the sum-gap bias. We derived theoretically and verified experimentally scaling laws of magnetotunneling characteristics and employ them for accurate extraction of the upper critical field H c2 . For Nb an extended region of surface superconductivity at H c2 < H < H c3 is observed. The parameters of Bi(Pb)-2212 were obtained from self-consistent analysis of magnetotunneling data at different levels of bias, dissipation powers, and for different mesa sizes, which precludes the influence of self-heating. It is found that H c2 (0) for Bi(Pb)-2212 is 70 T and decreases significantly at T → T c . The amplitude of subgap magnetoresistance is suppressed exponentially at T > T c /2, but remains negative, although very small, above T c . This may indicate the existence of an extended fluctuation region, which, however, does not destroy the general second-order type of the phase transition at T c .
We study the temperature dependence of the critical current modulation I(c)(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O(7-δ) bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the I(c)(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.