The cellular and molecular microenvironment of epithelial stem and progenitor cells is poorly characterized despite well-documented roles in homeostatic tissue renewal, wound healing, and cancer progression. Here, we demonstrate that, in organotypic cocultures, dermal pericytes substantially enhanced the intrinsically low tissue-regenerative capacity of human epidermal cells that have committed to differentiate and that this enhancement was independent of angiogenesis. We used microarray analysis to identify genes expressed by human dermal pericytes that could potentially promote epidermal regeneration. Using this approach, we identified as a candidate the gene LAMA5, which encodes laminin α5, a subunit of the ECM component laminin-511/521 (LM-511/521). LAMA5 was of particular interest as we had previously shown that it promotes skin regeneration both in vitro and in vivo. Analysis using immunogold localization revealed that pericytes synthesized and secreted LAMA5 in human skin. Consistent with this observation, coculture with pericytes enhanced LM-511/521 deposition in the dermal-epidermal junction of organotypic cultures. We further showed that skin pericytes could also act as mesenchymal stem cells, exhibiting the capacity to differentiate into bone, fat, and cartilage lineages in vitro. This study suggests that pericytes represent a potent stem cell population in the skin that is capable of modifying the ECM microenvironment and promoting epidermal tissue renewal from non-stem cells, a previously unsuspected role for pericytes.
Although homeostatic renewal of human skin epidermis is achieved by the combined activity of quiescent stem cells (SCs) and their actively cycling progeny, whether these two populations are equipotent in their capacity to regenerate tissue has not been determined in biological assays that mimic lifelong renewal. Using fluorescence activated cell separation strategy validated previously by us, human epidermis was fractionated into three distinct subsets: that is, α 6briCD71dim, α 6briCD71bri, and α 6dim with characteristics of keratinocyte stem, transient amplifying, and early differentiating cells, respectively. The global gene expression profile of these fractions was determined by microarray, confirming that the α 6briCD71dim subset was quiescent, the α 6briCD71bri was actively cycling, and the α 6dim subset expressed markers of differentiation. More importantly, functional evaluation of these populations in an in vivo model for tissue reconstitution at limiting cell dilutions revealed that the quiescent α 6briCD71dim fraction was the most potent proliferative and tissue regenerative population of the epidermis, capable of long‐term (LT) epidermal renewal from as little as 100 cells for up to 10 weeks. In contrast, the cycling α 6briCD71bri fraction was the first to initiate tissue reconstitution, although this was not sustained in the LT, while differentiating α 6dim cells possessed the lowest demonstrable tissue regenerative capacity. Our data suggest that in human skin, the epidermal proliferative compartment is not composed of equipotent cells, but rather is organized in a functionally hierarchical manner with the most potent quiescent SCs at its apex (i.e., α 6briCD71dim) followed by cycling progenitors (i.e., α 6briCD71bri) and finally early differentiating keratinocytes (i.e., α 6dim). STEM CELLS 2011;29:1256–1268
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.