Support Vector Data Description is a popular method for outlier detection. However, its usefulness largely depends on selecting good hyperparameter values -a difficult problem that has received significant attention in literature. Existing methods to estimate hyperparameter values are purely heuristic, and the conditions under which they work well are unclear. In this article, we propose LAMA (Local Active Min-Max Alignment), the first principled approach to estimate SVDD hyperparameter values by active learning. The core idea bases on kernel alignment, which we adapt to active learning with small sample sizes. In contrast to many existing approaches, LAMA provides estimates for both SVDD hyperparameters. These estimates are evidence-based, i.e., rely on actual class labels, and come with a quality score. This eliminates the need for manual validation, an issue with current heuristics. LAMA outperforms state-of-the-art competitors in extensive experiments on real-world data. In several cases, LAMA even yields results close to the empirical upper bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.