AI/AN persons had consistently higher UI death rates than did Whites. This disparity in overall rates coupled with recent increases in unintentional poisoning deaths requires that injury prevention be a major priority for improving health and preventing death among AI/AN populations.
We have used C6 glial cells (2B clone), early and late passage, as well as advanced passages (8-17) of glial cells derived from aged (18-month-old) mouse cerebral hemispheres (MACH), as model systems for studying glial properties. In this study passages 20-24 were considered "early" and passages 73-90 were considered "late." Activities of glutamine synthetase (GS) and cyclic nucleotide phosphohydrolase (CNP) were used as biochemical markers for astrocytes and oligodendrocytes, respectively. Glial phenotypes were identified immunocytochemically using double staining for glial fibrillary acidic protein (GFAP) and A2B5 antigen (type 1 and type 2 astrocytes) or galactocerebroside (GalC) and A2B5 antigen (oligodendrocytes); cells positive for A2B5 and negative for both GFAP and GalC were considered to be precursor cells. Cultures were grown either in DMEM supplemented with 10% fetal bovine serum or in serum-free chemically defined medium (CDM) supplemented with insulin and transferrin. We report that early-passage C6 glial cells continue to be bipotential cells and when grown in the absence of serum express high GS and CNP activities correlating with the high number of GFAP- and GalC-positive cells, respectively. Late-passage cells continued to be committed to the type 2 astrocytic phenotype regardless of media composition (+/- serum). MACH cultures consist of protoplasmic type 1 astrocytes, differentiated type 2 astrocytes, and oligodendrocytes as well as glial progenitor cells. When these cultures were grown in CDM+transferrin, both GS and CNP activities increased, suggesting that transferrin has provided the signal for progenitor cells present in these cultures derived from aged brain to differentiate into type 2 astrocytes and oligodendrocytes.
Injury and violence prevention strategies have greater potential for impact when they are based on scientific evidence. Systematic reviews of the scientific evidence can contribute key information about which policies and programs might have the greatest impact when implemented. However, systematic reviews have limitations, such as lack of implementation guidance and contextual information, that can limit the application of knowledge. “Technical packages,” developed by knowledge brokers such as the federal government, nonprofit agencies, and academic institutions, have the potential to be an efficient mechanism for making information from systematic reviews actionable. Technical packages provide information about specific evidence-based prevention strategies, along with the estimated costs and impacts, and include accompanying implementation and evaluation guidance to facilitate adoption, implementation, and performance measurement. We describe how systematic reviews can inform the development of technical packages for practitioners, provide examples of technical packages in injury and violence prevention, and explain how enhancing review methods and reporting could facilitate the use and applicability of scientific evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.