Immortalized rat mesencephalic cells (1RB3AN27) produced dopamine (DA) at a level that was higher than produced by undifferentiated or differentiated murine neuroblastoma cells (NBP2) in culture. Treatment of 1RB3AN27 and NBP2 cells with a cAMP stimulating agent increased tyrosine hydroxylase (TH) activity and the intensity of immunostaining for the DA transporter protein (DAT). 1RB3AN27 cells were labelled with primary antibodies to neuron specific enolase (NSE) and nestin and exhibited very little or no labeling with anti-glial fibrillary acidic protein (GFAP). 1RB3AN27 cells exhibited beta- and alpha-adrenoreceptors, and prostaglandin E1 receptors, all of which were linked to adenylate cyclase (AC). Dopamine receptor (D1) and cholinergic muscarinic receptors linked to AC were not detectable. The levels of PKC alpha and PKC beta isoforms were higher than those of PKC gamma and PKC delta in 1RB3AN27 cells. The 1RB3AN27 cells were more effective in reducing the rate of methamphetamine-induced turning in rats with unilateral 6-OHDA lesion of the nigrostriatal system than differentiated NBP2 cells. The grafted 1RB3AN27 were viable as determined by DiI labelling, but they did not divide and did not produce T-antigen protein; however, when these grafted cells were cultured in vitro, they resumed production of T-antigen and proliferated after the primary glia cells and neurons of host brain died due to maturation and subsequent degeneration. Examination of H&E stained sections of the grafted sites revealed no evidence of infiltration of inflammatory cells in the grafted area suggesting that these cells were not immunogenic. They also did not form tumors.
This investigation reports for the first time the establishment of immortalized clones of dopamine-producing nerve cells in culture. Freshly prepared single-cell suspensions from fetal (12-day-old) rat mesencephalic tissue were transfected with plasmid vectors, pSV3neo and pSV5neo, using an electroporation technique. Cells were plated in tissue culture dishes which were precoated with a special substrate and contained modified MCDB-153 growth medium with 10% heat inactivated fetal bovine serum. The immortalized cells were selected by placing the transfected cells in a selection medium (modified MCDB-153 containing 400 micrograms/ml geneticin). The survivors showed the presence of T-antigens and were non-tumorigenic. Two cell lines, 1RB3 derived from cells transfected with pSV3neo, and 2RB5 derived from cells transfected with pSV5neo revealed only 1 to 2% tyrosine hydroxylase (TH)-positive cells. Repeated single-cell cloning of these cell lines by a standard technique failed to increase the number of TH-positive cells in any clones. Using three cycles of growth, alternating between hormone-supplemented, serum-free medium and serum-containing medium produced a cell line (1RB3A) that was very rich in TH-positive cells. The recloning of 1RB3A yielded clones some of which contained over 95% TH-positive cells. These cells produced homovanillic acid, a metabolite of dopamine, and may be useful not only for neural transplant but also for basic neurobiological studies.
We have used C6 glial cells (2B clone), early and late passage, as well as advanced passages (8-17) of glial cells derived from aged (18-month-old) mouse cerebral hemispheres (MACH), as model systems for studying glial properties. In this study passages 20-24 were considered "early" and passages 73-90 were considered "late." Activities of glutamine synthetase (GS) and cyclic nucleotide phosphohydrolase (CNP) were used as biochemical markers for astrocytes and oligodendrocytes, respectively. Glial phenotypes were identified immunocytochemically using double staining for glial fibrillary acidic protein (GFAP) and A2B5 antigen (type 1 and type 2 astrocytes) or galactocerebroside (GalC) and A2B5 antigen (oligodendrocytes); cells positive for A2B5 and negative for both GFAP and GalC were considered to be precursor cells. Cultures were grown either in DMEM supplemented with 10% fetal bovine serum or in serum-free chemically defined medium (CDM) supplemented with insulin and transferrin. We report that early-passage C6 glial cells continue to be bipotential cells and when grown in the absence of serum express high GS and CNP activities correlating with the high number of GFAP- and GalC-positive cells, respectively. Late-passage cells continued to be committed to the type 2 astrocytic phenotype regardless of media composition (+/- serum). MACH cultures consist of protoplasmic type 1 astrocytes, differentiated type 2 astrocytes, and oligodendrocytes as well as glial progenitor cells. When these cultures were grown in CDM+transferrin, both GS and CNP activities increased, suggesting that transferrin has provided the signal for progenitor cells present in these cultures derived from aged brain to differentiate into type 2 astrocytes and oligodendrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.