As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity.
Multidrug-resistant Acinetobacter baumannii is among the most common causes of infectious complications associated with combat-related trauma in military personnel serving overseas. However, little is currently known about its pathogenesis. While the gastrointestinal (GI) tract has been found to be a major reservoir for A. baumannii, as well as to potentially contribute to development of multidrug resistance, no studies have addressed the mechanisms involved in gut colonization. In this study, we address this critical gap in knowledge by first assessing the interaction between secretory IgA (SIgA), the principal humoral immune defense on mucosal surfaces, and the A. baumannii clinical isolate Ci79. Surprisingly, SIgA appeared to enhance A. baumannii GI tract colonization, in a process mediated by bacterial thioredoxin A (TrxA), as evidenced by reduction of bacterial attachment in the presence of TrxA inhibitors. Additionally, a trxA targeted deletion mutant (ΔtrxA) showed reduced bacterial burdens within the GI tract 24 h after oral challenge by in vivo live imaging, along with loss of thiol-reductase activity. Surprisingly, not only was GI tract colonization greatly reduced but the associated 50% lethal dose (LD50) of the ΔtrxA mutant was increased nearly 100-fold in an intraperitoneal sepsis model. These data suggest that TrxA not only mediates A. baumannii GI tract colonization but also may contribute to pathogenesis in A. baumannii sepsis following escape from the GI tract under conditions when the intestinal barrier is compromised, as occurs with cases of severe shock and trauma.
Monte-Carlo probabilistic sensitivity analysis demonstrated a 38% to 99% probability that RALP provides cost savings (depending on the perspective). Higher surgical consumable costs are offset by a decreased hospital stay, lower complication rate, and faster return to work.
Multi-drug resistant Acinetobacter baumannii (MDR-Ab), an opportunistic pathogen associated with nosocomial and combat related infections, has a high mortality due to its virulence and limited treatment options. Deletion of the thioredoxin gene (trxA) from a clinical isolate of MDR-Ab resulted in a 100-fold increase in 50% lethal dose (LD50) in a systemic challenge murine model. Thus, we investigated the potential use of this attenuated strain as a live vaccine against MDR-Ab. Mice were vaccinated by subcutaneous (s.c.) injection of 2 × 105 CFU of the ΔtrxA mutant, boosted 14 days later with an equivalent inoculum, and then challenged 30 days post-vaccination by i.p. injection with 10 LD50 of the wild type (WT) Ci79 strain. Efficacy of vaccination was evaluated by monitoring MDR-Ab specific antibody titers and cytokine production, observing pathology and organ burdens after WT challenge, and measuring levels of serum pentraxin-3, a molecular correlate of A baumannii infection severity, before and after challenge. Mice vaccinated with the ΔtrxA mutant were fully protected against the lethal challenge of WT. However, little immunoglobulin class switching was observed with IgM predominating. Spleens harvested from vaccinated mice exhibited negligible levels of IL-4, IFN-γ and IL-17 production when stimulated with UV-inactivated WT Ci79. Importantly, tissues obtained from vaccinated mice displayed reduced pathology and organ burden compared to challenged non-vaccinated mice. Additionally, serum pentraxin-3 concentrations were not increased 24 hrs after challenge in vaccinated mice, correlating with reduction of WT MDR-Ab infection in ΔtrxA immunized mice. Furthermore, passive immunization with ΔtrxA-immune sera provided protection against lethal systemic Ci79 challenge. Collectively, the defined live attenuated ΔtrxA strain is a vaccine candidate against emerging MDR Acinetobacter infection.
The Gram-negative pathogen, Acinetobacter baumannii has emerged as a global nosocomial health threat affecting the majority of hospitals in the U.S. and abroad. The redox protein thioredoxin has been shown to play several roles in modulation of cellular functions affecting various virulence factors in Gram-negative pathogens. This study aims to explore the role of thioredoxin-A protein (TrxA) in A . baumannii virulence. We determined that deletion of the TrxA gene did not significantly affect resistance to environmental stressors such as temperature, salt, and pH. However, TrxA was critical for survival in the presence of elevated levels of hydrogen peroxide. Lack of TrxA was associated with decreased expression of type IV pili related genes and an inability to undergo normal twitching motility. Interestingly, the TrxA-null mutant was able to form biofilms better than the wildtype (WT) and was observed to be significantly less virulent than the WT in a pulmonary infection model. These results are supportive of thioredoxin playing a key role in A . baumannii virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.