SummaryFrancisella tularensis causes the human disease tularemia. F. tularensis is able to survive and replicate within macrophages, a trait that has been correlated with its high virulence, but it is unclear the exact mechanism(s) this organism uses to escape killing within this hostile environment. F. tularensis virulence is dependent upon the Francisella pathogenicity island (FPI), a cluster of genes that we show here shares homology with type VI secretion gene clusters in Vibrio cholerae and Pseudomonas aeruginosa. We demonstrate that two FPI proteins, VgrG and IglI, are secreted into the cytosol of infected macrophages. VgrG and IglI are required for F. tularensis phagosomal escape, intramacrophage growth, inflammasome activation and virulence in mice. Interestingly, VgrG secretion does not require the other FPI genes. However, VgrG and other FPI genes, including PdpB (an IcmF homologue), are required for the secretion of IglI into the macrophage cytosol, suggesting that VgrG and other FPI factors are components of a secretion system. This is the first report of F. tularensis FPI virulence proteins required for intramacrophage growth that are translocated into the macrophage.
Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1-and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.
We report the isolation of a Coccidioides immitis gene (SOWgp) which encodes an immunodominant, spherule outer wall glycoprotein that is presented as a component of a parasitic phase-specific, membranous layer at the cell surface. The open reading frame of the gene from C. immitis isolate C735 translates a 422-amino-acid (aa) polypeptide that contains 6 copies of a 41-to 47-residue tandem repeat enriched in proline (20.4 mol%) and aspartate (19.7%). Two additional isolates of C. immitis produce SOWgps of different molecular sizes (328 and 375 aa) and show a corresponding difference in the number of tandem repeats (four and five, respectively). The accurate molecular sizes of these proline-rich antigens, as determined by surface-enhanced laser desorption/ ionization mass spectrometry, are comparable to the predicted sizes from the translated protein sequences rather than the estimated sizes based on gel-electrophoretic separation. The results of Northern hybridization confirmed that SOWgp expression is parasitic phase specific, and immunoblot studies showed that elevated levels of production of this antigen occurred during early spherule development. The recombinant polypeptide (rSOWp) was shown to bind to mammalian extracellular matrix (ECM) proteins in an in vitro assay (laminin > fibronectin > collagen type IV), suggesting that the parasitic cell surface antigen may function as an adhesin. Deletion of the SOWgp gene by using a targeted gene replacement strategy resulted in partial loss of the ability of intact spherules to bind to ECM proteins and a significant reduction in virulence of the mutant strain. The wild-type gene was restored in the mutant by homologous recombination, and the revertant strain was shown to be as virulent as the parental isolate in our murine model of coccidioidomycosis. The parasitic cell surface glycoprotein encoded by the SOWgp gene appears to function as an adhesin and contributes to the virulence of C. immitis.
Isolated human microphthalmia/anophthalmia, a cause of congenital blindness, is a clinically and genetically heterogeneous developmental disorder characterized by a small eye and other ocular abnormalities. Three microphthalmia/anophthalmia loci have been identified, and two others have been inferred by the co-segregation of translocations with the phenotype. We previously found that mice with ocular retardation (the or-J allele), a microphthalmia phenotype, have a null mutation in the retinal homeobox gene Chx10 (refs 7,8). We report here the mapping of a human microphthalmia locus on chromosome 14q24.3, the cloning of CHX10 at this locus and the identification of recessive CHX10 mutations in two families with non-syndromic microphthalmia (MIM 251600), cataracts and severe abnormalities of the iris. In affected individuals, a highly conserved arginine residue in the DNA-recognition helix of the homeodomain is replaced by glutamine or proline (R200Q and R200P, respectively). Identification of the CHX10 consensus DNA-binding sequence (TAATTAGC) allowed us to demonstrate that both mutations severely disrupt CHX10 function. Human CHX10 is expressed in progenitor cells of the developing neuroretina and in the inner nuclear layer of the mature retina. The strong conservation in vertebrates of the CHX10 sequence, pattern of expression and loss-of-function phenotypes demonstrates the evolutionary importance of the genetic network through which this gene regulates eye development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.