Aim: To synthesize silica nanoparticles (SNPs) from olive residue with anticancer properties. Methods: SNPs were synthesized from olive residue ash (ORA). After characterization, cytotoxicity of the SNPs was assessed in vitro, with measurement of reactive oxygen species (ROS) levels. Results: The average diameter of the synthesized SNPs was 30–40 nm, and zeta potential analysis suggested they were stable. The synthesized SNPs were less cytotoxic than commercially available SNPs against fibroblast cells, and the cytotoxic effect on breast cancer cells was significantly higher compared with fibroblast cells. SNPs showed greater uptake into cancer cells where there was greater production of free radicals. Conclusion: SNPs synthesized from ORA have potential anticancer applications because they are more cytotoxic toward cancer cells than fibroblast cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.