Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1 (HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte (CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin (HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.
Objectives: Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals and is the most damaging disease of livestock worldwide, leading to great economic losses. The aim of this research was the inactivation of FMDV type O/IRN/1/2007 to produce a gamma ray-irradiated (GRI) vaccine in order to immunize mice and guinea pigs. Methods: In this research, the Iranian isolated FMDV type O/IRN/1/2007 was irradiated by gamma ray to prepare an inactivated whole virus antigen and formulated as a GRI vaccine with unaltered antigenic characteristics. Immune responses against this vaccine were evaluated on mice and guinea pigs. Results: The comparison of the immune responses between the GRI vaccine and conventional vaccine did not show any significant difference in neutralizing antibody titer, memory spleen T lymphocytes or IFN-γ, IL-4, IL-2 and IL-10 concentrations (p > 0.05). In contrast, there were significant differences in all of the evaluated immune factors between the two vaccinated groups of mice and negative control mice (p < 0.05). The protective dose 50 for the conventional and GRI vaccines obtained were 6.28 and 7.07, respectively, which indicated the high potency of both vaccines. Conclusion: GRI vaccine is suitable for both routine vaccination and control of FMDV in emergency outbreaks.
Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/O/IRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model. The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the pcDNA3.1+ and pEGFP-N1 vectors to construct the VP(1) gene cassettes. The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector, which solely expressed the GFP protein. Six mice groups were respectively immunized by the sub-cloned pcDNA3.1(+)-VP1 gene cassette as the DNA vaccine, DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together, conventional vaccine, PBS (as negative control), pcDNA3.1(+) vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group). Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together, the DNA vaccine alone and the conventional inactivated vaccine (P<0.05). Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone, but this response was the most for the conventional vaccine group. However, induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine, but T-cell proliferation and IFN-γ concentration were the most in DNA vaccine with the GMCSF gene. Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene, showed protective neutralizing antibody response and the most Th1 cellular immunity.
Background and Aims: Accurate and rapid diagnosis is necessary for effective control and prevention of foot-and-mouth disease (FMD). In present study, was evaluated real time reverse transcription-polymerase chain reaction (rRT-PCR) assay along with diagnostic routine methods for the detection of all seven serotypes of FMD virus (FMDV), namely O, C, A, SAT1, 2, 3 and Asia 1 in biological samples at the reference laboratory for FMD, Iran. Materials and Methods: Two different RT-PCR assays targeting two different regions 5´ untranslated region (5´-UTR) and RNA polymerase (3D) of the FMDV genome were used to confirm the presence of FMDV in epithelial suspensions. Results: In the two methods the viral RNA in all tested archival serotypes of FMDV were detected. Specificity of this reaction was confirmed by the use of swine vesicular disease virus and blue-tongue. The amount of cycle threshold (C T) value of all seven serotypes was different and the lowest and highest of C T value achieved for SAT3, A, O types and SAT2, C types, respectively. Conclusion: The results showed that RT-PCR was more sensitive and effective than routine diagnostic methods. Furthermore, RT-PCR as a strong and valuable tool concomitant with diagnostic routine methods facilitate monitoring the fields FMDV strains and suggested that the use of the multiple diagnostic targets could enhance the sensitivity of the molecular methods for the detection of FMDV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.