The automated algorithm designed to detect the foveal center was more accurate in detecting the foveal center than relying on the fixation target of the SD-OCT instrument.
Optical Coherence Tomography Angiography (OCTA), a functional extension of OCT, has the potential to replace most invasive fluorescein angiography (FA) exams in ophthalmology. So far, OCTA's field of view is however still lacking behind fluorescence fundus photography techniques. This is problematic, because many retinal diseases manifest at an early stage by changes of the peripheral retinal capillary network. It is therefore desirable to expand OCTA's field of view to match that of ultrawidefield fundus cameras. We present a custom developed clinical high-speed swept-source OCT (SS-OCT) system operating at an acquisition rate 8-16 times faster than today's state-of-the-art commercially available OCTA devices. Its speed allows us to capture ultra-wide fields of view of up to 90 degrees with an unprecedented sampling density and hence extraordinary resolution by merging two single shot scans with 60 degrees in diameter. To further enhance the visual appearance of the angiograms, we developed for the first time a three-dimensional deep learning based algorithm for denoising volumetric OCTA data sets. We showcase its imaging performance and clinical usability by presenting images of patients suffering from diabetic retinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.