The engagement of programmed death 1 (PD-1) to its ligands, PD-L1 and PD-L2, inhibits proliferation and cytokine production mediated by antibodies to CD3 (refs. 5,6,7). Blocking the PD-1-PD-L1 pathway in mice chronically infected with lymphocytic choriomeningitis virus restores the capacity of exhausted CD8(+) T cells to undergo proliferation, cytokine production and cytotoxic activity and, consequently, results in reduced viral load. During chronic HIV infection, HIV-specific CD8(+) T cells are functionally impaired, showing a reduced capacity to produce cytokines and effector molecules as well as an impaired capacity to proliferate. Here, we found that PD-1 was upregulated on HIV-specific CD8(+) T cells; PD-1 expression levels were significantly correlated both with viral load and with the reduced capacity for cytokine production and proliferation of HIV-specific CD8(+) T cells. Notably, cytomegalovirus (CMV)-specific CD8(+) T cells from the same donors did not upregulate PD-1 and maintained the production of high levels of cytokines. Blocking PD-1 engagement to its ligand (PD-L1) enhanced the capacity of HIV-specific CD8(+) T cells to survive and proliferate and led to an increased production of cytokines and cytotoxic molecules in response to cognate antigen. The accumulation of HIV-specific dysfunctional CD8(+) T cells in the infected host could prevent the renewal of a functionally competent HIV-specific CD8(+) repertoire.
Peptide-major histocompatibility complex protein complexes (pMHCs) on antigen-presenting cells (APCs) are central to T cell activation. Within minutes of peptide-specific T cells interacting with APCs, pMHCs on APCs formed clusters at the site of T cell contact. Thereafter, these clusters were acquired by T cells and internalized through T cell receptor-mediated endocytosis. During this process, T cells became sensitive to peptide-specific lysis by neighboring T cells (fratricide). This form of immunoregulation could explain the "exhaustion" of T cell responses that is induced by high viral loads and may serve to down-regulate immune responses.
Many receptors for endocytosis recycle into and out of cells through early endosomes. We now find in dendritic cells that the DEC-205 multilectin receptor targets late endosomes or lysosomes rich in major histocompatibility complex class II (MHC II) products, whereas the homologous macrophage mannose receptor (MMR), as expected, is found in more peripheral endosomes. To analyze this finding, the cytosolic tails of DEC-205 and MMR were fused to the external domain of the CD16 Fcγ receptor and studied in stable L cell transfectants. The two cytosolic domains each mediated rapid uptake of human immunoglobulin (Ig)G followed by recycling of intact CD16 to the cell surface. However, the DEC-205 tail recycled the CD16 through MHC II–positive late endosomal/lysosomal vacuoles and also mediated a 100-fold increase in antigen presentation. The mechanism of late endosomal targeting, which occurred in the absence of human IgG, involved two functional regions: a membrane-proximal region with a coated pit sequence for uptake, and a distal region with an EDE triad for the unusual deeper targeting. Therefore, the DEC-205 cytosolic domain mediates a new pathway of receptor-mediated endocytosis that entails efficient recycling through late endosomes and a greatly enhanced efficiency of antigen presentation to CD4+ T cells.
Metabolic, infectious, and tumor cell-intrinsic noxae can all evoke the endoplasmic reticulum (ER) stress response in tumor cells, which is critical for tumor cell growth and cancer progression. Evidence exists that the ER stress response can drive a proinflammatory program in tumor cells and macrophages but, to our knowledge, a role for the tumor ER stress response in influencing macrophages and inflammation in the tumor microenvironment has not been suggested. Here we show that macrophages cultured in conditioned medium from ER-stressed tumor cells become activated, and themselves undergo ER stress with the up-regulation of Grp78, Gadd34, Chop, and Xbp-1 splicing, suggesting a general activation of the ER stress-signaling pathways. Furthermore, these macrophages recapitulate, amplify and expand the proinflammatory response of tumor cells. We term this phenomenon "transmissible" ER stress. Although neither Toll-like receptor (TLR)2 nor interleukin 6 receptor (IL6R) signaling is involved, a reduction was observed in the transmission of ER stress to TLR4 KO macrophages, consistent with the fact that a second signal through TLR4 combined with exposure to tumor ER stress-conditioned medium results in a faster ER stress response and an enhancement of proinflammatory cytokine production in macrophages. The injection of tumor ER stress-conditioned medium into WT mice elicited a generalized ER stress response in the liver. We suggest that transmissible ER stress is a mechanism through which tumor cells can control myeloid cells by directing them toward a proinflammatory phenotype, thus facilitating tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.