Naturally occurring polysaccharides, such as cellulose, hemicellulose, and chitin, have roles in plant skeletons and/or related properties in living organisms. Their hierarchically regulated production systems show potential for designing nanocomposite fabrication using engineered microorganisms. This study has demonstrated that genetically engineered Gluconacetobacter hansenii (G. hansenii) individual cells can fabricate naturally composited nanofibrils by simultaneous production of hyaluronan (HA) and bacterial cellulose (BC). The cells were manipulated to contain hyaluronan synthase and UDP-glucose dehydrogenase genes, which are essential for HA biosynthesis. Fluorescence microscopic observations indicated the production of composited nanofibrils and suggested that HA secretion was associated with the cellulose secretory pathway in G. hansenii. The gel-like nanocomposite materials produced by the engineered G. hansenii exhibited superior properties compared with conventional in situ nanocomposites. This genetic engineering approach facilitates the use of G. hansenii for designing integrated cellulose-based nanomaterials.
This study attempts to clarify the basic material properties of in-vivo-fabricated hyaluronan (HA)/bacterial cellulose (BC) nanocomposites prepared previously. BC membranes (pellicles) generated by Gluconacetobacter hansenii (G. hansenii) are promising biomaterials owing to their outstanding biocompatible properties. Recently, speci c demands for biomedical applications of BC have increased owing to its excellent mechanical properties. Although many techniques have been developed to improve the biofunctional properties of BC pellicles, such modi cations remain limited owing to technical di culties in the modulation of complex biosynthetic processes. Therefore, we previously developed an in vivo modi cation technique to produce nanocomposite pellicles composed of BC and HA (in vivo HA/BC), which are directly secreted from genetically engineered G. hansenii. In the present study, the HA extractability and content rate, physical characteristics, and cytocompatibility of in vivo HA/BC have been investigated in comparison to conventional in situ HA/BC and native BC pellicle. The results suggested that HA more strongly adsorbed to the solid BC surface of in vivo HA/BC than that of in situ HA/BC, which possibly affected the dynamic viscoelastic characteristics. Furthermore, in vivo HA/BC showed remarkably high human epidermal cell adhesion. These results indicate the great potential of in vivo modi cation to expand the usefulness of BC-based biomaterials.
This study attempts to clarify the basic material properties of in-vivo-fabricated hyaluronan (HA)/bacterial cellulose (BC) nanocomposites prepared previously. BC membranes (pellicles) generated by Gluconacetobacter hansenii (G. hansenii) are promising biomaterials owing to their outstanding biocompatible properties. Recently, specific demands for biomedical applications of BC have increased owing to its excellent mechanical properties. Although many techniques have been developed to improve the biofunctional properties of BC pellicles, such modifications remain limited owing to technical difficulties in the modulation of complex biosynthetic processes. Therefore, we previously developed an in vivo modification technique to produce nanocomposite pellicles composed of BC and HA (in vivo HA/BC), which are directly secreted from genetically engineered G. hansenii. In the present study, the HA extractability and content rate, physical characteristics, and cytocompatibility of in vivo HA/BC have been investigated in comparison to conventional in situ HA/BC and native BC pellicle. The results suggested that HA more strongly adsorbed to the solid BC surface of in vivo HA/BC than that of in situ HA/BC, which possibly affected the dynamic viscoelastic characteristics. Furthermore, in vivo HA/BC showed remarkably high human epidermal cell adhesion. These results indicate the great potential of in vivo modification to expand the usefulness of BC-based biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.