Cross-pollination can improve the percentage of fruit set and fruit weight for most red flesh varieties in pitaya. The technology of pollen storage was very important for successful cross-pollination. However, till present, the technology of pollen storage is unsatisfactory in pitaya production. In this study, pitaya pollen stored at low temperature was taken as the research object, and its physicochemical indexes, metabolomics, and transcriptomics were studied. The results showed that in vitro pollen germination rate decreased significantly with the increase in storage time. Soluble sugar and soluble protein content of pollen peaked on the first day of storage, whereas its relative conductivity, and manlondialdehyde (MDA) and proline contents increased gradually during storage. At the same time, the antioxidant enzyme system of pollen was also affected. Superoxide dismutase (SOD) activity decreased, while the activities of catalase (CAT) and peroxidase (POD) increased and superoxide anion generation rate increased gradually during storage. According to the metabolomics results, amino acid, peptide, nucleotide, plant hormone, terpene, alcohol, phenol, flavonoid, sterol, vitamin, ester, sphingolipid, and ketone contents increased significantly during storage, whereas flavonoid and pigment contents declined gradually. During pollen storage, the gene expressions related to carbohydrate metabolism, protein metabolism, acid and lipid metabolism, sterol metabolism, plant hormone metabolism, and signal transductions were significantly downregulated. With KEGG pathway analysis, isoquinoline alkaloid biosynthesis, tyrosine metabolism, alanine, aspartate, and glutamate metabolism of pollen were affected significantly during low-temperature storage. Correlation analysis showed that the gene expression patterns of HuRP2, HuUPL1, and HuAAT2 had significant effects on pollen germination. D-arabinose 5-phosphate and myricetin were positively correlated with pollen germination rate, which was valuable for studying preservation agents. In this study, the changes in pollen during low-temperature storage were described from the level of metabolites and genes, which could provide theoretical support for the research and development of pollen long-term storage technology in pitaya.
Hand pollination is a necessary assisting method for pitaya (Selenicereus spp.) production to achieve a high yield. With the cultivated area increasing at an exponential rate in recent years, a comprehensive study of the pollination process was conducted. We developed an ideal medium for pitaya pollen in vitro germination in this study, then tested the activity of pollen collected from or stored for various time periods. We discovered that those collected between 2 h before blooming and 6 h after blooming had the higher germination rates (27.2–65.1%), the highest activity was at 2 h after blooming, and that storing them at 4°C for 24 hours reduces their germination rate from 65.2 percent to 35.5 percent and their production to about 82%. As a result, pollinating plants with pollen that has been held for more than 24 hours is not recommended unless a breakthrough in pollen storage is achieved. We also discovered that stigma receptivity and pollen activity are synchronized, which together determines the rate of fruit setting and the size of the fruit. Pollination within 6 hours after flowering offers the optimum fruit setting percentage and size, while pollination at 6:00 pm, 2 hours before blooming, is also a good alternative; however, pollination at 6:00 am the next morning is expected to result in a 23 % drop in productivity. These findings will be beneficial for reproductive biology research, as well as laying the groundwork for hand pollination to boost pitaya output and breeding efficiency.
Self-incompatibility (SI) is a major issue in dragon fruit (Selenicereus spp.) breeding and production. Therefore, a better understanding of the dragon fruit SI mechanism is needed to improve breeding efficiency and ultimate production costs. To reveal the underlying mechanisms of SI in dragon fruit, plant anatomy, de novo RNA sequencing-based transcriptomic analysis, and multiple bioinformatic approaches were used to analyze gene expression in the pistils of the self-pollinated and cross-pollinated dragon fruit flowers at different intervals of time after pollination. Using fluorescence microscopy, we observed that the pollen of ‘Hongshuijing’, a self-incompatible dragon fruit variety (S. monacanthus), germinated on its own stigma. However, the pollen tube elongation has ceased at 1/2 of the style, confirming that dragon fruit experiences gametophyte self-incompatibility (GSI). We found that the pollen tube elongation in vitro was inhibited by self-style glycoproteins in the SI variety, indicating that glycoproteins were involved in SI. That is to say the female S factor should be homologous of S-RNase or PrsS (P. rhoeas stigma S factor), both of which are glycoproteins and are the female S factors of the two known GSI mechanism respectively. Bioinformatics analyses indicated that among the 43,954 assembled unigenes from pistil, there were six S-RNase genes, while 158 F-box genes were identified from a pollen transcriptomic dataset. There were no P. rhoeas type S genes discovered. Thus, the identified S-RNase and F-box represent the candidate female and male S genes, respectively. Analysis of differentially expressed genes (DEGs) between the self and cross-pollinated pistils at different time intervals led to the identification of 6,353 genes. We then used a weighted gene co-expression network analysis (WGCNA) to find some non-S locus genes in SI responses in dragon fruit. Additionally, 13 transcription factors (TFs) (YABBY4, ANL2, ERF43, ARF2, BLH7, KNAT6, PIF3, two OBF1, two HY5 and two LHY/CCA) were identified to be involved in dragon fruit GSI. Thus, we uncovered candidate S and non-S genes and predicted more SI-related genes for a more detailed investigation of the molecular mechanism of dragon fruit SI. Our findings suggest that dragon fruit possesses a GSI system and involves some unique regulators. This study lays the groundwork for future research into SI mechanisms in dragon fruit and other plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.